Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 8101, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32393792

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Sci Rep ; 10(1): 164, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31932606

RESUMO

We discuss a simple idealistic quantum entanglement based protocol for quantum random number generation allowing a trusted third party to publicly perform arbitrarily complex tests of randomness without any violation of the secrecy of the generated bit sequences. The protocol diminishes also an average time of the randomness testing (thus enabling arbitrary shortening of this time with increasing number of entangled qubits).

3.
Nanomaterials (Basel) ; 9(9)2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31461966

RESUMO

We study strong optical coupling of metal nanoparticle arrays with dielectric substrates. Based on the Fermi Golden Rule, the particle-substrate coupling is derived in terms of the photon absorption probability assuming a local dipole field. An increase in photocurrent gain is achieved through the optical coupling. In addition, we describe light-induced, mesoscopic electron dynamics via the nonlocal hydrodynamic theory of charges. At small nanoparticle size (<20 nm), the impact of this type of spatial dispersion becomes sizable. Both absorption and scattering cross sections of the nanoparticle are significantly increased through the contribution of additional nonlocal modes. We observe a splitting of local optical modes spanning several tenths of nanometers. This is a signature of semi-classical, strong optical coupling via the dynamic Stark effect, known as Autler-Townes splitting. The photocurrent generated in this description is increased by up to 2%, which agrees better with recent experiments than compared to identical classical setups with up to 6%. Both, the expressions derived for the particle-substrate coupling and the additional hydrodynamic equation for electrons are integrated into COMSOL for our simulations.

4.
Sci Rep ; 9(1): 2181, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30778095

RESUMO

A simplified analytical model of the effect of high pressure on the critical temperature and other thermodynamic properties of superconducting systems is developed using the general conformal transformation method and group-theoretical arguments. Relationships between the characteristic ratios [Formula: see text] and [Formula: see text] and the stability of the superconducting state is discussed. Including a single two-parameter fluctuation in the density of states, placed away from the Fermi level, stable solutions determined by [Formula: see text] are found. It is shown that the critical temperature Tc(p), as a function of high external pressure, can be predicted from experimental data, based on the values of the two characteristic ratios, the critical temperature, and a pressure coefficient measured at zero pressure. The model can be applied to s-wave low-temperature and high-temperature superconductors, as well as to some novel superconducting systems of the new generation. The problem of emergence of superconductivity under high pressure is explained as well. The discussion is illustrated by using experimental data for superconducting elements available in the literature. A criterion for compatibility of experimental data is formulated, allowing one to identify incompatible measurement data for superconducting systems for which the maximum or the minimum critical temperature is achieved under high pressure.

5.
Materials (Basel) ; 11(7)2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29941821

RESUMO

Nanoparticles—regularly patterned or randomly dispersed—are a key ingredient for emerging technologies in photonics. Of particular interest are scattering and field enhancement effects of metal nanoparticles for energy harvesting and converting systems. An often neglected aspect in the modeling of nanoparticles are light interaction effects at the ultimate nanoscale beyond classical electrodynamics. Those arise from microscopic electron dynamics in confined systems, the accelerated motion in the plasmon oscillation and the quantum nature of the free electron gas in metals, such as Coulomb repulsion and electron diffusion. We give a detailed account on free electron phenomena in metal nanoparticles and discuss analytic expressions stemming from microscopic (Random Phase Approximation—RPA) and semi-classical (hydrodynamic) theories. These can be incorporated into standard computational schemes to produce more reliable results on the optical properties of metal nanoparticles. We combine these solutions into a single framework and study systematically their joint impact on isolated Au, Ag, and Al nanoparticles as well as dimer structures. The spectral position of the plasmon resonance and its broadening as well as local field enhancement show an intriguing dependence on the particle size due to the relevance of additional damping channels.

6.
Sci Rep ; 8(1): 7709, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29769585

RESUMO

Within the general conformal transformation method a simplified analytical model is proposed to study the effect of external hydrostatic pressure on low- and high-temperature superconducting systems. A single fluctuation in the density of states, placed away from the Fermi level, as well as external pressure are included in the model to derive equations for the superconducting gap, free energy difference, and specific heat difference. The zero- and sub-critical temperature limits are discussed by the method of successive approximations. The critical temperature is found as a function of high external pressure. It is shown that there are four universal types of the response of the system, in terms of dependence of the critical temperature on increasing external pressure. Some effects, which should be possible to be observed experimentally in s-wave superconductors, the cuprates (i.e. high-Tc superconductors) and other superconducting materials of the new generation such as two-gap superconductors, are revealed and discussed. An equation for the ratio [Formula: see text] ≡ 2Δ(0)/Tc, as a function of the introduced parameters, is derived and solved numerically. Analysis of other thermodynamic quantities and the characteristic ratio [Formula: see text] ≡ ΔC(Tc)/CN(Tc) is performed numerically, and mutual relations between the discussed quantities are investigated. The simple analytical model presented in the paper may turn out to be helpful in searching for novel superconducting components with higher critical temperatures induced by pressure effects.

7.
Sci Technol Adv Mater ; 17(1): 149-165, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27877866

RESUMO

The commensurability condition is applied to determine the hierarchy of fractional fillings of Landau levels in monolayer and in bilayer graphene. The filling rates for fractional quantum Hall effect (FQHE) in graphene are found in the first three Landau levels in one-to-one agreement with the experimental data. The presence of even denominator filling fractions in the hierarchy for FQHE in bilayer graphene is explained. Experimentally observed hierarchy of FQHE in the first and second Landau levels in monolayer graphene and in the zeroth Landau level in bilayer graphene is beyond the conventional composite fermion interpretation but fits to the presented nonlocal topology commensurability condition.

8.
Sci Rep ; 5: 14287, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26392385

RESUMO

In this paper, the commensurability conditions, which originated from the unique topology of two-dimensional systems, are applied to determine the quantum Hall effect hierarchy in the case of a monolayer graphene. The fundamental difference in a definition of a typical semiconductor and a monolayer graphene filling factor is pointed out. The calculations are undertaken for all spin-valley branches of two lowest Landau levels, since only they are currently experimentally accessible. The obtained filling factors are compared with the experimental data and a very good agreement is achieved. The work also introduces a concept of the single-loop fractional quantum Hall effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...