Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35329705

RESUMO

The application of metallic nanoparticles leads to an increase in the efficiency of solar cells due to the plasmonic effect. We explore various scenarios of the related mechanism in the case of metallized perovskite solar cells, which operate as hybrid chemical cells without p-n junctions, in contrast to conventional cells such as Si, CIGS or thin-layer semiconductor cells. The role of metallic nano-components in perovskite cells is different than in the case of p-n junction solar cells and, in addition, the large forbidden gap and a large effective masses of carriers in the perovskite require different parameters for the metallic nanoparticles than those used in p-n junction cells in order to obtain the increase in efficiency. We discuss the possibility of activating the very poor optical plasmonic photovoltaic effect in perovskite cells via a change in the chemical composition of the perovskite and through special tailoring of metallic admixtures. Here we show that it is possible to increase the absorption of photons (optical plasmonic effect) and simultaneously to decrease the binding energy of excitons (related to the inner electrical plasmonic effect, which is dominant in perovskite cells) in appropriately designed perovskite structures with multishell elongated metallic nanoparticles to achieve an increase in efficiency by means of metallization, which is not accessible in conventional p-n junction cells. We discuss different methods for the metallization of perovskite cells against the background of a review of various attempts to surpass the Shockley-Queisser limit for solar cell efficiency, especially in the case of the perovskite cell family.

2.
Nanomaterials (Basel) ; 9(9)2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31461966

RESUMO

We study strong optical coupling of metal nanoparticle arrays with dielectric substrates. Based on the Fermi Golden Rule, the particle-substrate coupling is derived in terms of the photon absorption probability assuming a local dipole field. An increase in photocurrent gain is achieved through the optical coupling. In addition, we describe light-induced, mesoscopic electron dynamics via the nonlocal hydrodynamic theory of charges. At small nanoparticle size (<20 nm), the impact of this type of spatial dispersion becomes sizable. Both absorption and scattering cross sections of the nanoparticle are significantly increased through the contribution of additional nonlocal modes. We observe a splitting of local optical modes spanning several tenths of nanometers. This is a signature of semi-classical, strong optical coupling via the dynamic Stark effect, known as Autler-Townes splitting. The photocurrent generated in this description is increased by up to 2%, which agrees better with recent experiments than compared to identical classical setups with up to 6%. Both, the expressions derived for the particle-substrate coupling and the additional hydrodynamic equation for electrons are integrated into COMSOL for our simulations.

3.
Plasmonics ; 11: 637-651, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27069439

RESUMO

Plasmons are fundamental collective excitations in many particle charged systems like in free electron liquid in metals, high energy nuclear plasma in solar core or in fusion devices, in ion gas in ionosphere or in intra- and inter-galactic gas clouds. Plasmons play a central role also in small systems, in particular in metallic nanoparticles and in their arrays allowing for subdiffraction light manipulation. In analogy to metallic nanoparticles, we have developed description of the soft plasmonics in finite electrolyte systems confined in micrometer scale by insulating membranes. Plasmon-type excitations in such finite ionic systems are determined via originally formulated theoretical model allowing to describe surface and volume plasmons in confined geometry of the ion liquid. Size-effect for attenuation of surface plasmons in the finite electrolyte system is described and its various regimes are identified. The cross-over in the plasmon damping system-size-dependence is demonstrated including scattering of ions and their energy losses via irradiation. The plasmon resonances in ion systems replicate the metal cluster plasmon phenomena, though in distinct energy and size scale related to larger ion mass and lower ion concentration (in low energy plasma) in comparison to electrons in metals. The possibility for tuning plasmon resonances in finite ionic systems in a wide range by changing system size, ion, and electrolyte parameters is demonstrated.

4.
Materials (Basel) ; 8(7): 3910-3937, 2015 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28793415

RESUMO

The propagation of collective wave type plasmonic excitations along infinite chains of metallic nanospheres has been analyzed, including near-, medium- and far-field contributions to the plasmon dipole interaction with all retardation effects taken into account. It is proven that there exist weakly-damped self-modes of plasmon-polaritons in the chain for which the propagation range is limited by relatively small Ohmic losses only. In this regime, the Lorentz friction irradiation losses on each nanosphere in the chain are ideally compensated by the energy income from the rest of the chain. The completely undamped collective waves were identified in the case of the presence of persistent external excitation of some fragment of the chain. The obtained characteristics of these excitations fit the experimental observations well.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA