Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
medRxiv ; 2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37502988

RESUMO

Legionella is an opportunistic waterborne pathogen that is difficult to eradicate in colonized drinking water pipes. Legionella control is further challenged by aging water infrastructure and lack of evidence-based guidance for building treatment. This study assessed multiple premise water remediation approaches designed to reduce Legionella pneumophila (Lp) within a residential building located in an aging, urban drinking water system over a two-year period. Samples (n=745) were collected from hot and cold-water lines and quantified via most probable number culture. Building-level treatment approaches included three single heat shocks (HS), three single chemical shocks (CS), and continuous low-level chemical disinfection (CCD) in the potable water system. The building was highly colonized with Lp with 71% Lp positivity. Single HS had a statistically significant Lp reduction one day post treatment but no significant Lp reduction one, two, and four weeks post treatment. The first two CS resulted in statistically significant Lp reduction at two days and four weeks post treatment, but there was a significant Lp increase at four weeks following the third CS. CCD resulted in statistically significant Lp reduction ten weeks post treatment implementation. This demonstrates that in a building highly colonized with Lp, sustained remediation is best achieved using CCD.

2.
Water Res ; 226: 119198, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36240713

RESUMO

Widespread contamination of groundwater with per- and polyfluoroalkyl substances (PFAS) has required drinking water producers to quickly adopt practical and efficacious treatments to limit human exposure and deleterious health outcomes. This pilot-scale study comparatively investigated PFAS adsorption behaviors in granular activated carbon (GAC) and two strong-base gel anion exchange resin (AER) columns operated in parallel over a 441-day period to treat contaminated groundwater dominated by short-chain perfluorocarboxylic acids (PFCA). Highly-resolved breakthrough profiles of homologous series of 2-8 CF2 PFCA and perfluorosulfonic acids (PFSA), including ultrashort-chain compounds and branched isomers, were measured to elucidate adsorption trends. Sample ports at intermediate bed depths could predict 50% breakthrough of compounds on an accelerated basis, but lower empty bed contact times led to conservative estimates of initial breakthrough. Homologous PFAS series displayed linear (GAC) and log-linear (AER) relationships between chain-length and breakthrough, independent of initial concentration. AERs generally outperformed GAC on a normalized bed volume basis, and this advantage widened with increasing PFAS chain-length. As designed, all treatments would have short full-scale service times (≤142 days for GAC; ≤61 days for AERs) before initial breakthrough of short-chain (2-4 CF2) PFCA. However, AER displayed far longer breakthrough times for PFSA compared to GAC (>3× treatment time), and breakthrough was not observed for PFSA with >4 CF2 in AERs. GAC had a finite molar adsorption capacity for total PFAS, leading to a stoichiometric replacement of short-chain PFCA by PFSA and longer-chain PFCA over time. AERs quickly reached a finite adsorption capacity for PFCA, but they showed substantially greater selectivity for PFSA whose capacity was not reached within the duration of the pilot. Breakthrough characteristics of keto- and unsaturated-PFSA, identified in the groundwater by suspect screening, were also evaluated in absence of reference standards. Modified PFAS structures (branched, keto-, unsaturated-) broke through faster than linear and unmodified perfluorinated structures with equal degrees of fluorination, and the effects were more pronounced in GAC compared to AERs. The results highlight that the design of robust PFAS treatment systems should consider facets beyond current PFAS targets including operational complexities and impacts of unregulated and unmonitored co-contaminants.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Purificação da Água , Humanos , Carvão Vegetal/química , Resinas de Troca Aniônica/química , Adsorção , Fluorocarbonos/análise , Purificação da Água/métodos , Poluentes Químicos da Água/análise
3.
J Hazard Mater ; 433: 128804, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35366450

RESUMO

Granular activated carbon (GAC) has proven to be a successful technology for per- and polyfluoroalkyl substances (PFAS) removal from contaminated drinking water supplies. Proper design of GAC treatment relies upon characterization of media service-life, which can change significantly depending on the PFAS contamination, treatment media, and water quality, and is often determined by fitting descriptive models to breakthrough curves. However, while common descriptive breakthrough models are favored for their ease-of-use, they have a significant shortcoming in that they are not able to properly fit PFAS desorption in competitive sorption scenarios. The present work adapts three common descriptive models to fit competitive PFAS breakthrough curves from a GAC pilot study. The adapted and original models were fit to the experimental breakthrough curves for 12 common PFAS and evaluated using adjusted R2 and reduced χ2 values. This study found that the novel adaptation of the common descriptive models successfully accounted for desorption of PFAS compounds from the GAC, accurately describing increased exposure risks due to elevated effluent levels during desorption without significantly increasing the complexity of implementing the models.


Assuntos
Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Purificação da Água , Carvão Vegetal , Fluorocarbonos/análise , Projetos Piloto , Poluentes Químicos da Água/análise
4.
Environ Sci Technol ; 55(23): 16120-16129, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34791872

RESUMO

Peracetic acid (PAA) is an alternative to traditional wastewater disinfection as it has a high oxidation potential without producing chlorinated disinfection byproducts. Reports have shown the effectiveness of PAA to reduce waterborne viruses, but the mechanism of inactivation is understudied. This study evaluated PAA consumption by amino acids and nucleotides that are the building blocks of both viral capsids and genomes. Cysteine (>1.7 min-1) and methionine (>1.2 min-1) rapidly consumed PAA, while cystine (1.9 × 10-2 min-1) and tryptophan (1.4 × 10-4 min-1) reactions occurred at a slower rate. All other amino acids and nucleotides did not react significantly (p < 0.05) with PAA during experiments. Also, PAA treatment did not result in significant (p < 0.05) reductions of purified RNA from MS2 bacteriophage and murine norovirus. Data in this study suggest that PAA effectively inactivates viruses by targeting susceptible amino acids on capsid proteins and does not readily damage viral genomes. Knowledge of virus capsid structures and protein compositions can be used to qualitatively predict the relative resistance or susceptibility of virus types to PAA. Capsid structures containing a higher total number of target amino acids may be more susceptible to PAA reactions that damage structural integrity resulting in inactivation.


Assuntos
Desinfetantes , Ácido Peracético , Animais , Desinfecção , Levivirus , Camundongos , Inativação de Vírus
5.
Front Cell Infect Microbiol ; 11: 693090, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307195

RESUMO

Contamination of fomites by human norovirus (HuNoV) can initiate and prolong outbreaks. Fomite swabbing is necessary to predict HuNoV exposure and target interventions. Historically, swab recovered HuNoV has been measured by molecular methods that detect viral RNA but not infectious HuNoV. The recent development of HuNoV cultivation in human intestinal enteroids (HIEs) enables detection of infectious HuNoV. It is unknown if the swabbing process and swab matrix will allow for cultivation of fomite recovered HuNoV. We used HIEs to culture swab-recovered HuNoV GII.4 Sydney from experimentally infected surfaces-a hospital bed tray (N = 32), door handle (N = 10), and sanitizer dispenser (N = 11). Each surface was swabbed with macrofoam swabs premoistened in PBS plus 0.02% Tween80. Swab eluate was tested for infectious HuNoV by cultivation in HIE monolayers. Infectious HuNoV can be recovered from surfaces inoculated with at least 105 HuNoV genome equivalents/3 cm2. In total, 57% (N = 53) of recovered swabs contained infectious HuNoV detected by HIEs. No difference in percent positive swabs was observed between the three surfaces at p = 0.2. We demonstrate that fomite swabbing can be combined with the HIE method to cultivate high titer infectious HuNoV from the environment, filling a significant gap in HuNoV detection. Currently, high titers of HuNoV are required to measure growth in HIEs and the HIE system precludes absolute quantification of infectious viruses. However, the HIE system can provide a binary indication of infectious HuNoV which enhances existing detection methods. Identification of infectious HuNoVs from swabs can increase monitoring accuracy, enhance risk estimates, and help prevent outbreaks.


Assuntos
Infecções por Caliciviridae , Norovirus , Fômites , Humanos , Intestinos , Norovirus/genética , RNA Viral/genética
6.
Water Res ; 201: 117292, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34118648

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are compounds of emerging concern due to their persistence in the global water cycle and detection in drinking water sources. However, PFAS have been poorly studied in bottled water, especially in the United States. This study investigated the occurrence of PFAS and related factors in 101 uniquely labelled bottled water products for sale in the U.S. Products were screened for 32 target PFAS by solid phase extraction-liquid chromatography-tandem mass spectrometry (SPE-LC-MS/MS). Fifteen of 32 measured analytes were detected, consisting primarily of C3-C10 perfluorocarboxylic acids (PFCA) and C3-C6 and C8 perfluorosulfonic acids (PFSA). PFAS were detected above method detection limits in 39/101 tested products. The Σ32PFAS concentrations detected were 0.17-18.87 ng/L with a median of 0.98 ng/L; 97% of samples were below 5 ng/L. PFCA (83%) and short-chain perfluoroalkyl acids (PFAA) containing 5 or less CF2 groups (67%) were more prevalent on a mass basis than PFSA and longer-chain PFAA, respectively. Ultrashort-chain PFPrA, measured for the first time in bottled water, accounted for the greatest individual fraction of detected PFAS mass (42%) and was found almost exclusively in products labeled as Spring water. Purified water products contained significantly less PFAS than Spring water products, which was attributed to the use of reverse osmosis (RO) treatment in the majority of Purified waters (25/35) compared to Spring waters (1/45). RO-treated products contained significantly lower Σ32PFAS, long-chain, short-chain, and PFPrA concentrations than products without RO. Although no enforceable PFAS regulations exist for bottled water in the U.S., the finding that some products approach levels of concern justify a framework for monitoring PFAS in bottled water production.


Assuntos
Água Potável , Fluorocarbonos , Poluentes Químicos da Água , Cromatografia Líquida , Monitoramento Ambiental , Fluorocarbonos/análise , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/análise
7.
J Environ Manage ; 236: 561-570, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30771675

RESUMO

Wastewater and power utilities in the United States have an enormous opportunity to collaborate on the mutually beneficial uses of reclaimed water. Despite close proximity to wastewater facilities, only a limited number of power plants are currently using municipal reclaimed water for cooling tower and boiler applications. Through a review of the literature, this document aims at creating a more perspicuous understanding of the reuse of reclaimed water for power plant applications, particularly as pertains to those associated with cooling towers and boilers, by highlighting the drivers of current implementation, regulatory issues and treatment goals, and available treatment technologies. Through an in-depth analysis of case studies, the review also highlights key examples of reclaimed water reuse projects at power utilities together with the related benefits and challenges.


Assuntos
Purificação da Água , Água , Centrais Elétricas , Eliminação de Resíduos Líquidos , Águas Residuárias , Abastecimento de Água
8.
Food Environ Virol ; 11(1): 76-89, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30430442

RESUMO

With increasing interest in peracetic acid (PAA) as a disinfectant in water treatment processes, this study determined PAA treatment effects on human noroviruses (hNoVs) genotype I (GI) and genotype II (GII) as well as effects on bacteriophage MS2 and murine norovirus (MNV) in relation to pH. Across all pH conditions, PAA achieved between 0.2 and 2.5 log10 reduction of hNoVs over 120 min contact time in buffer solution as measured by reverse transcription-qPCR (RT-qPCR). The PAA treatments produced similar RT-qPCR reductions of MS2 and MNV, in the range of 0.2-2.7 log10. Infectivity assays achieved > 4 log10 reduction of both MS2 and MNV in buffer solution after 120 min contact time. Comparing PAA activity across varying pH, disinfection at pH 8.5, in general, resulted in less reduction of infectivity and molecular signals compared to pH conditions of 6.5 and 7.5. This difference was most pronounced for reductions in infectivity of MNV and MS2, with as much as 2.7 log10 less reduction at pH 8.5 relative to lower pH conditions. This study revealed that PAA was an effective disinfectant for treatment of hNoV GI and GII, MS2 and MNV, with greatest virus reduction observed for MS2 and MNV infectivity. RT-qPCR reductions of MS2 and MNV were lower than concurrent MS2 and MNV infectivity reductions, suggesting that observed hNoV RT-qPCR reductions may underestimate reductions in hNoV infectivity achieved by PAA. Although virus disinfection by PAA occurred at all evaluated pH levels, PAA is most effective at pH 6.5-7.5.


Assuntos
Infecções por Caliciviridae/virologia , Norovirus/efeitos dos fármacos , Ácido Peracético , Desinfetantes/química , Desinfetantes/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Norovirus/genética , Norovirus/patogenicidade , Ácido Peracético/química , Ácido Peracético/farmacologia , RNA Viral/análise , RNA Viral/efeitos dos fármacos , Inativação de Vírus/efeitos dos fármacos
9.
J Environ Manage ; 228: 416-428, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30243077

RESUMO

Water conduits have a large untapped potential to recapture energy for small hydroelectric generation, which can substantially reduce grid electricity consumption and/or provide renewable energy to water agencies. Over the past decade, there has been a recent technological renaissance in off-the-shelf "water-to-wire" turbine technologies including reaction, impulse, and hydrokinetic turbines that target the sub 1-MW in-conduit hydroelectric market. However, adoption of small hydropower technologies remain limited in water and wastewater utility sector, possibly due to the lack of market penetration and exposure. Moreover, information about newly developed small hydropower technologies in the last 5-10 years for in-conduit applications are highly dispersed in the literature. As such, this paper is a comprehensive review on recent technological innovations and trends in hydropower generation from water conduits. Sixteen turbine technologies (eight conventional turbines and eight emerging turbines) are assessed and compared based on their potential benefits and challenges, technology readiness levels, as well as potential sites for installations in diversion structures, potable and irrigation water distribution systems, and wastewater outfalls. Although conventional turbines are considered to be more robust, the modular design of the newer turbines potentially offers a more cost effective solution and better scaling-up capability. Selected case studies on the application of conventional and new turbines for pipelines are also are also reviewed and discussed.


Assuntos
Água , Energia Renovável , Tecnologia
10.
Membranes (Basel) ; 8(3)2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30096937

RESUMO

Ideally, pressure driven membrane processes used in wastewater treatment such as reverse osmosis and nanofiltration should provide a complete physical barrier to the passage of pathogens such as enteric viruses. In reality, manufacturing imperfections combined with membrane ageing and damage can result in breaches as small as 20 to 30 nm in diameter, sufficient to allow enteric viruses to contaminate the treated water and compromise public health. In addition to continuous monitoring, frequent demonstration of the integrity of membranes is required to provide assurance that the barrier to the passage of such contaminants is intact. Existing membrane integrity monitoring systems, however, are limited and health regulators typically credit high-pressure membrane systems with only 2 log10 virus rejection, well below their capability. A reliable real-time method that can recognize the true rejection potential of membrane systems greater than 4 log10 has not yet been established. This review provides a critical evaluation of the current methods of integrity monitoring and identifies novel approaches that have the potential to provide accurate, representative virus removal efficiency estimates.

11.
J Environ Manage ; 221: 1-9, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29793207

RESUMO

Peracetic acid (PAA) is a strong oxidant/bactericide that has been applied in various industries (e.g., food processing, pharmaceuticals, medical device sterilization, etc.) as a disinfectant. There is increasing interest in using PAA for wastewater disinfection because it does not form halogenated byproducts, and no post-treatment quenching is required. Previous studies have demonstrated good efficiency in controlling bacteria in wastewater, but limited information is available for viruses, especially those hosted by mammals (e.g., norovirus). Therefore, a study on the infectivity reduction of murine norovirus (MNV) was undertaken to evaluate the disinfection efficacy of PAA or UV alone and in combination with UV irradiation in undisinfected secondary effluent from a municipal wastewater reclamation facility (MWW) and phosphate buffer solution (PBS) at pH 7. Experiments employing MS2 bacteriophage were also performed in parallel for comparison purposes. MS2 infectivity reduction was found to be lower than MNV infectivity reduction for each condition studied - PAA, PAA + UV, and UV disinfection. These data suggest that MS2 may not be an appropriate surrogate to accurately predict the reduction of MNV infectivity. UV irradiation, in a dose range of 5-250 mJ/cm2, provided linear log inactivation (-log (N/N0)) with a regression slope (cm2mJ-1) of 0.031-0.034 and 0.165-0.202 for MS2 and MNV, respectively. UV irradiation provided similar inactivation for MS2 and MNV in both suspensions (PBS or MWW). Low infectivity reduction of MS2 was observed when PAA was used alone at a practical dose of 1.5 mg/L and below. A greater reduction of both MNV and MS2 was observed in PAA disinfection experiments using PBS as the microbial suspension medium, than in secondary effluent. Similar results were observed in PAA + UV experiments, in which greater synergistic effects were found in PBS than in MWW. Results of OH radical formation experiments suggest the presence of radical scavengers in MWW, which resulted in less opportunity for MNV and MS2 to encounter OHradicals. This study also demonstrated that the type of water can have a substantial impact on wastewater disinfection when employing PAA or PAA + UV treatment due to the matrix effect and the presence of radical scavengers, respectively. The results from this study could be employed to aid in the conceptual design of PAA and UV disinfection facilities, especially when norovirus is the organism of concern.


Assuntos
Levivirus , Norovirus , Raios Ultravioleta , Águas Residuárias , Animais , Desinfecção , Camundongos , Ácido Peracético
12.
Water Res ; 134: 1-12, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29407643

RESUMO

Noroviruses cause significant global health burdens and waterborne transmission is a known exposure pathway. Chlorination is the most common method of disinfection for water and wastewater worldwide. The purpose of this study was to investigate the underlying causes for discrepancies in human norovirus (hNoV) resistance to free chlorine that have been previously published, and to assess hNoV GI and GII persistence during disinfection of municipal secondary wastewater (WW) effluent. Our results reveal that choice of hNoV purification methodology prior to seeding the viruses in an experimental water matrix influences disinfection outcomes in treatment studies. Common hNoV purification processes such as solvent extraction and 0.45-µm filtration were ineffective in removing high levels of organics introduced into water or wastewater samples when seeding norovirus positive stool. These methods resulted in experimental water matrices receiving an additional 190 mg/L as Cl2 of 15-s chlorine demand and approximately 440 mg/L as Cl2 of 30-min chlorine demand due to seeding norovirus positive stool at 1% w/v. These high organic loads impact experimental water chemistry and bias estimations of hNoV persistence. Advanced purification of norovirus positive stool using sucrose cushion ultracentrifugation and ultrafiltration reduced 15-s chlorine demands by 99% and TOC by 93% for loose (i.e. unformed diarrhea) stools. Using these methods, hNoV GI and GII persistence was investigated during free chlorination of municipal WW. A suite five of kinetic inactivation models was fit to viral reverse transcription-qPCR reduction data, and model predicted CT values for 1, 2, and 3 log10 reduction of hNoV GI in municipal WW by free chlorine were 0.3, 2.1, and 7.8 mg-min/L, respectively. Model predicted CT values for reduction of hNoV GII in WW were 0.4, 2.0, and 7.0 mg-min/L, respectively. These results indicate that current WW treatment plant disinfection practices employing free chlorine are likely protective for public health with regards to noroviruses, and will achieve at least 3-log reduction of hNoV GI and GII RNA despite previous reports of high hNoV resistance.


Assuntos
Cloro/farmacologia , Norovirus/efeitos dos fármacos , Águas Residuárias/virologia , Desinfecção/métodos , Halogenação , Norovirus/genética , RNA Viral/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Eliminação de Resíduos Líquidos/métodos , Poluentes da Água
13.
Appl Environ Microbiol ; 83(22)2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28887415

RESUMO

Human noroviruses (hNoVs) are a known public health concern associated with the consumption of leafy green vegetables. While a number of studies have investigated pathogen reduction on the surfaces of leafy greens during the postharvest washing process, there remains a paucity of data on the level of treatment needed to inactivate viruses in the wash water, which is critical for preventing cross-contamination. The objective of this study was to quantify the susceptibility of hNoV genotype I (GI), hNoV GII, murine norovirus (MNV), and bacteriophage MS2 to free chlorine in whole leaf, chopped romaine, and shredded iceberg lettuce industrial leafy green wash waters, each sampled three times over a 4-month period. A suite of kinetic inactivation models was fit to the viral reduction data to aid in quantification of concentration-time (CT) values. Results indicate that 3-log10 infectivity reduction was achieved at CT values of less than 0.2 mg · min/liter for MNV and 2.5 mg · min/liter for MS2 in all wash water types. CT values for 2-log10 molecular reduction of hNoV GI in whole leaf and chopped romaine wash waters were 1.5 and 0.9 mg · min/liter, respectively. For hNoV GII, CT values were 13.0 and 7.5 mg · min/liter, respectively. In shredded iceberg wash water, 3-log10 molecular reduction was not observed for any virus over the time course of experiments. These findings demonstrate that noroviruses may exhibit genogroup-dependent resistance to free chlorine and emphasize the importance of distinguishing between genogroups in hNoV persistence studies.IMPORTANCE Postharvest washing of millions of pounds of leafy greens is performed daily in industrial processing facilities with the intention of removing dirt, debris, and pathogenic microorganisms prior to packaging. Modest inactivation of pathogenic microorganisms (less than 2 log10) is known to occur on the surfaces of leafy greens during washing. Therefore, the primary purpose of the sanitizing agent is to maintain microbial quality of postharvest processing water in order to limit cross-contamination. This study modeled viral inactivation data and quantified the free-chlorine CT values that processing facilities must meet in order to achieve the desired level of hNoV GI and GII reduction. Disinfection experiments were conducted in industrial leafy green wash water collected from a full-scale fresh produce processing facility in the United States, and hNoV GI and GII results were compared with surrogate molecular and infectivity data.


Assuntos
Cloro/farmacologia , Desinfecção/métodos , Lactuca/virologia , Norovirus/efeitos dos fármacos , Folhas de Planta/virologia , Animais , Desinfecção/instrumentação , Contaminação de Alimentos/análise , Contaminação de Alimentos/prevenção & controle , Manipulação de Alimentos , Genótipo , Humanos , Lactuca/crescimento & desenvolvimento , Camundongos , Norovirus/classificação , Norovirus/crescimento & desenvolvimento , Norovirus/isolamento & purificação , Folhas de Planta/crescimento & desenvolvimento
14.
Environ Sci Technol ; 51(20): 11918-11927, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-28910089

RESUMO

The objective of this study was to characterize human norovirus (hNoV) GI and GII reductions during disinfection by peracetic acid (PAA) and monochloramine in secondary wastewater (WW) and phosphate buffer (PB) as assessed by reverse transcription-qPCR (RT-qPCR). Infectivity and RT-qPCR reductions are also presented for surrogate viruses murine norovirus (MNV) and bacteriophage MS2 under identical experimental conditions to aid in interpretation of hNoV molecular data. In WW, RT-qPCR reductions were less than 0.5 log10 for all viruses at concentration-time (CT) values up to 450 mg-min/L except for hNoV GI, where 1 log10 reduction was observed at CT values of less than 50 mg-min/L for monochloramine and 200 mg-min/L for PAA. In PB, hNoV GI and MNV exhibited comparable resistance to PAA and monochloramine with CT values for 2 log10 RT-qPCR reduction between 300 and 360 mg-min/L. Less than 1 log10 reduction was observed for MS2 and hNoV GII in PB at CT values for both disinfectants up to 450 mg-min/L. Our results indicate that hNoVs exhibit genogroup dependent resistance and that disinfection practices targeting hNoV GII will result in equivalent or greater reductions for hNoV GI. These data provide valuable comparisons between hNoV and surrogate molecular signals that can begin the process of informing regulators and engineers on WW treatment plant design and operational practices necessary to inactivate hNoVs.


Assuntos
Cloraminas , Norovirus , Ácido Peracético , Águas Residuárias , Animais , Biomarcadores , Desinfecção , Humanos , Camundongos
15.
Food Environ Virol ; 9(4): 473-486, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28616834

RESUMO

One key assumption impacting data quality in viral inactivation studies is that reduction estimates are not altered by the virus seeding process. However, seeding viruses often involves the inadvertent addition of co-constituents such as cell culture components or additives used during preparation steps which can impact viral reduction estimates by inducing non-representative oxidant demand in disinfection studies and fouling in membrane assessments. The objective of this study was therefore to characterize a mammalian norovirus surrogate, murine norovirus (MNV), and bacteriophage MS2 at sequential stages of viral purification and to quantify their potential contribution to artificial oxidant demand and non-representative membrane fouling. Our results demonstrate that seeding solvent extracted and 0.1 micron filtered MNV to ~105 PFU/mL in an experimental water matrix will result in additional total organic carbon (TOC) and 30 min chlorine demand of 39.2 mg/L and 53.5 mg/L as Cl2, respectively. Performing sucrose cushion purification on the MNV stock prior to seeding reduces the impacts of TOC and chlorine demand to 1.6 and 0.15 mg/L as Cl2, respectively. The findings for MNV are likely relevant for other mammalian viruses propagated in serum-based media. Thus, advanced purification of mammalian virus stocks by sucrose cushion purification (or equivalent density-based separation approach) is warranted prior to seeding in water treatment assessments. Studies employing bacteriophage MS2 as a surrogate virus may not need virus purification, since seeding MS2 at a concentration of ~106 PFU/mL will introduce only ~1 mg/L of TOC and ~1 mg/L as Cl2 of chlorine demand to experimental water matrices.


Assuntos
Desinfetantes/farmacologia , Levivirus/crescimento & desenvolvimento , Norovirus/crescimento & desenvolvimento , Virologia/métodos , Animais , Cloro/farmacologia , Meios de Cultura/química , Meios de Cultura/metabolismo , Desinfecção , Humanos , Levivirus/efeitos dos fármacos , Levivirus/metabolismo , Camundongos , Norovirus/efeitos dos fármacos , Norovirus/metabolismo , Virologia/instrumentação
16.
Environ Sci Technol ; 51(5): 2972-2981, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28165216

RESUMO

Chlorination has long been used for disinfection of municipal wastewater (MWW) effluent while the use peracetic acid (PAA) has been proposed more recently in the United States. Previous work has demonstrated the bactericidal effectiveness of PAA and monochloramine in wastewater, but limited information is available for viruses, especially ones of mammalian origin (e.g., norovirus). Therefore, a comparative assessment was performed of the virucidal efficacy of PAA and monochloramine against murine norovirus (MNV) and MS2 bacteriophage in secondary effluent MWW and phosphate buffer (PB). A suite of inactivation kinetic models was fit to the viral inactivation data. Predicted concentration-time (CT) values for 1-log10 MS2 reduction by PAA and monochloramine in MWW were 1254 and 1228 mg-min/L, respectively. The 1-, 2-, and 3-log10 model predicted CT values for MNV viral reduction in MWW were 32, 47, and 69 mg-min/L for PAA and 6, 13, and 28 mg-min/L for monochloramine, respectively. Wastewater treatment plant disinfection practices informed by MS2 inactivation data will likely be protective for public health but may overestimate CT values for reduction of MNV. Additionally, equivalent CT values in PB resulted in greater viral reduction which indicate that viral inactivation data in laboratory grade water may not be generalizable to MWW applications.


Assuntos
Ácido Peracético , Águas Residuárias , Animais , Desinfetantes , Desinfecção , Humanos , Levivirus , Camundongos , Norovirus , Inativação de Vírus
17.
Water Environ Res ; 88(11): 1973-1984, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28661317

RESUMO

Wastewater collection system lift station operations require a substantial amount of energy, and can be as a major source of greenhouse gas (GHG) emissions for wastewater utilities. Many lift stations operate with local or basic controls that have no hydraulic relationship with other collection system lift stations. This study demonstrated a unique energy-efficient control method of lift station operation that utilizes hydraulic modeling results generated from site-specific conditions to optimize the pumping units and reduce simultaneous running cycles on a real time basis. The pilot tests conducted at two pilot areas of the wastewater collection system of a utility in Florida demonstrated that the energy savings obtained through such operational optimization was 14 to 17% for the two pilot areas investigated. The study demonstrated that substantial annual energy costs and GHG emissions reduction could be achieved utilizing this method, particularly for utilities located in flat geographic locations where hundreds of lift stations are required to transfer wastewater.


Assuntos
Poluentes Atmosféricos , Computadores , Conservação de Recursos Energéticos , Engenharia Sanitária , Instalações de Eliminação de Resíduos , Monitoramento Ambiental , Efeito Estufa , Pilotos , Águas Residuárias , Purificação da Água/métodos
18.
Environ Sci Technol ; 49(22): 13724-32, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26461069

RESUMO

Holistic management of water and energy resources through energy and water quality management systems (EWQMSs) have traditionally aimed at energy cost reduction with limited or no emphasis on energy efficiency or greenhouse gas minimization. This study expanded the existing EWQMS framework and determined the impact of different management strategies for energy cost and energy consumption (e.g., carbon footprint) reduction on system performance at two drinking water utilities in California (United States). The results showed that optimizing for cost led to cost reductions of 4% (Utility B, summer) to 48% (Utility A, winter). The energy optimization strategy was successfully able to find the lowest energy use operation and achieved energy usage reductions of 3% (Utility B, summer) to 10% (Utility A, winter). The findings of this study revealed that there may be a trade-off between cost optimization (dollars) and energy use (kilowatt-hours), particularly in the summer, when optimizing the system for the reduction of energy use to a minimum incurred cost increases of 64% and 184% compared with the cost optimization scenario. Water age simulations through hydraulic modeling did not reveal any adverse effects on the water quality in the distribution system or in tanks from pump schedule optimization targeting either cost or energy minimization.


Assuntos
Água Potável , Abastecimento de Água/economia , Abastecimento de Água/métodos , California , Simulação por Computador , Custos e Análise de Custo , Qualidade da Água
19.
Water Res ; 75: 164-87, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25770440

RESUMO

In this paper, a review of emerging desalination technologies is presented. Several technologies for desalination of municipal and industrial wastewater have been proposed and evaluated, but only certain technologies have been commercialized or are close to commercialization. This review consists of membrane-based, thermal-based and alternative technologies. Membranes based on incorporation of nanoparticles, carbon nanotubes or graphene-based ones show promise as innovative desalination technologies with superior performance in terms of water permeability and salt rejection. However, only nanocomposite membranes have been commercialized while others are still under fundamental developmental stages. Among the thermal-based technologies, membrane distillation and adsorption desalination show the most promise for enhanced performance with the availability of a waste heat source. Several alternative technologies have also been developed recently; those based on capacitive deionization have shown considerable improvements in their salt removal capacity and feed water recovery. In the same category, microbial desalination cells have been shown to desalinate high salinity water without any external energy source, but to date, scale up of the process has not been methodically evaluated. In this paper, advantages and drawbacks of each technology is discussed along with a comparison of performance, water quality and energy consumption.


Assuntos
Salinidade , Água do Mar/química , Purificação da Água/métodos , Qualidade da Água , Purificação da Água/instrumentação
20.
J Environ Manage ; 153: 108-20, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25688476

RESUMO

Holistic management of water and energy resources is critical for water utilities facing increasing energy prices, water supply shortage and stringent regulatory requirements. In the early 1990s, the concept of an integrated Energy and Water Quality Management System (EWQMS) was developed as an operational optimization framework for solving water quality, water supply and energy management problems simultaneously. Approximately twenty water utilities have implemented an EWQMS by interfacing commercial or in-house software optimization programs with existing control systems. For utilities with an installed EWQMS, operating cost savings of 8-15% have been reported due to higher use of cheaper tariff periods and better operating efficiencies, resulting in the reduction in energy consumption of ∼6-9%. This review provides the current state-of-knowledge on EWQMS typical structural features and operational strategies and benefits and drawbacks are analyzed. The review also highlights the challenges encountered during installation and implementation of EWQMS and identifies the knowledge gaps that should motivate new research efforts.


Assuntos
Conservação de Recursos Energéticos , Fontes Geradoras de Energia , Qualidade da Água , Recursos Hídricos , Modelos Teóricos , Abastecimento de Água/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...