Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Paleoceanogr Paleoclimatol ; 34(7): 1057-1073, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31598586

RESUMO

Producing independent and accurate chronologies for marine sediments is a prerequisite to understand the sequence of millennial-scale events and reveal potential temporal offsets between marine and continental records, or between different marine records, possibly from different regions. The last 40 ky is a generally well-constrained period since radiocarbon (14C) can be used as an absolute dating tool. However, in the northern North Atlantic, calendar ages cannot be directly derived from 14C ages, due to temporal and spatial variations of surface reservoir ages. Alternatively, chronologies can be derived by aligning Greenland ice-core time series with marine surface records. Yet this approach suffers from the lack of clearly defined climatic events between 14.7 and 23.3 cal ky BP (hereafter ka), a crucial period encompassing Heinrich Stadial 1 and the onset of the last deglaciation. In this study, (i) we assess the benefits of 230Th normalization to refine the sedimentation history between surface temperature alignment tie points and (ii) revisit the chronologies of three North Atlantic marine records. Our study supports the contention that the marked increase in the Greenland Ca2+ record at 17.48 ka ± 0.21 ky (1σ) occurred within dating uncertainty of sea surface temperature cooling in the North Atlantic at the onset of Heinrich Stadial 1. This sharp feature might be useful for future chronostratigraphic alignments to remedy the lack of chronological constraint between 14.7 and 23.3 ka for North Atlantic marine records that are subject to large changes in 14C surface reservoir age.

2.
Science ; 339(6126): 1419-23, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23520109

RESUMO

Export of organic carbon from surface waters of the Antarctic Zone of the Southern Ocean decreased during the last ice age, coinciding with declining atmospheric carbon dioxide (CO(2)) concentrations, signaling reduced exchange of CO(2) between the ocean interior and the atmosphere. In contrast, in the Subantarctic Zone, export production increased into ice ages coinciding with rising dust fluxes, thus suggesting iron fertilization of subantarctic phytoplankton. Here, a new high-resolution productivity record from the Antarctic Zone is compiled with parallel subantarctic data over the past million years. Together, they fit the view that the combination of these two modes of Southern Ocean change determines the temporal structure of the glacial-interglacial atmospheric CO(2) record, including during the interval of "lukewarm" interglacials between 450 and 800 thousand years ago.


Assuntos
Ciclo do Carbono , Dióxido de Carbono/análise , Oceanos e Mares , Regiões Antárticas , Atmosfera , Clima , Sedimentos Geológicos/química , Camada de Gelo , Ferro/análise , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/metabolismo , Água do Mar/química , Tempo
3.
Nature ; 495(7442): 495-8, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23538831

RESUMO

Growing evidence suggests that the low atmospheric CO2 concentration of the ice ages resulted from enhanced storage of CO2 in the ocean interior, largely as a result of changes in the Southern Ocean. Early in the most recent deglaciation, a reduction in North Atlantic overturning circulation seems to have driven CO2 release from the Southern Ocean, but the mechanism connecting the North Atlantic and the Southern Ocean remains unclear. Biogenic opal export in the low-latitude ocean relies on silicate from the underlying thermocline, the concentration of which is affected by the circulation of the ocean interior. Here we report a record of biogenic opal export from a coastal upwelling system off the coast of northwest Africa that shows pronounced opal maxima during each glacial termination over the past 550,000 years. These opal peaks are consistent with a strong deglacial reduction in the formation of silicate-poor glacial North Atlantic intermediate water (GNAIW). The loss of GNAIW allowed mixing with underlying silicate-rich deep water to increase the silicate supply to the surface ocean. An increase in westerly-wind-driven upwelling in the Southern Ocean in response to the North Atlantic change has been proposed to drive the deglacial rise in atmospheric CO2 (refs 3, 4). However, such a circulation change would have accelerated the formation of Antarctic intermediate water and sub-Antarctic mode water, which today have as little silicate as North Atlantic Deep Water and would have thus maintained low silicate concentrations in the Atlantic thermocline. The deglacial opal maxima reported here suggest an alternative mechanism for the deglacial CO2 release. Just as the reduction in GNAIW led to upward silicate transport, it should also have allowed the downward mixing of warm, low-density surface water to reach into the deep ocean. The resulting decrease in the density of the deep Atlantic relative to the Southern Ocean surface promoted Antarctic overturning, which released CO2 to the atmosphere.


Assuntos
Camada de Gelo , Água do Mar/química , Silicatos/análise , Silicatos/metabolismo , África , Oceano Atlântico , Atmosfera/química , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Oceanos e Mares , Temperatura , Clima Tropical
4.
Science ; 308(5724): 1003-6, 2005 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-15890879

RESUMO

Since the first evidence of low algal productivity during ice ages in the Antarctic Zone of the Southern Ocean was discovered, there has been debate as to whether it was associated with increased polar ocean stratification or with sea-ice cover, shortening the productive season. The sediment concentration of biogenic barium at Ocean Drilling Program site 882 indicates low algal productivity during ice ages in the Subarctic North Pacific as well. Site 882 is located southeast of the summer sea-ice extent even during glacial maxima, ruling out sea-ice-driven light limitation and supporting stratification as the explanation, with implications for the glacial cycles of atmospheric carbon dioxide concentration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...