Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38081276

RESUMO

A new shattered pellet injection system was designed and built to perform disruption mitigation experiments on ASDEX Upgrade. The system can inject pellets with diameters of 1, 2, 4, or 8 mm with variable lengths over a range of L/D ratios of ∼0.5-1.5. By using helium or deuterium as propellant gas, the pellets can be accelerated to speeds between 60 and 750 m/s. The velocity range slightly depends on the pellet mass. The injection system is capable of preparing three pellets in separate barrels at the same time. Once accelerated by the propellant gas pulse, the pellets travel through one of three parallel flight tubes. Each flight tube is separated into three sections with increasing diameters of 12, 14, and 16 mm. Two gaps between the sections allow for removal of the propellant gas by expansion into two separate expansions tanks (0.3 and 0.035 m3), pellet observation in the first gap and the torus gate valve in the second. Each flight tube end is equipped with an exchangeable shatter head with different shatter angles, square or circular cross-section, and different lengths. The gas preparation and control systems allow highly automated pellet generation for precision of the pellet composition and an excellent reproducibility of shattered pellet experiments.

2.
Rev Sci Instrum ; 83(10): 10D727, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23130796

RESUMO

The new JET ITER-like wall (made of beryllium and tungsten) is more fragile than the former carbon fiber composite wall and requires active protection to prevent excessive heat loads on the plasma facing components (PFC). Analog CCD cameras operating in the near infrared wavelength are used to measure surface temperature of the PFCs. Region of interest (ROI) analysis is performed in real time and the maximum temperature measured in each ROI is sent to the vessel thermal map. The protection of the ITER-like wall system started in October 2011 and has already successfully led to a safe landing of the plasma when hot spots were observed on the Be main chamber PFCs. Divertor protection is more of a challenge due to dust deposits that often generate false hot spots. In this contribution we describe the camera, data capture and real time processing systems. We discuss the calibration strategy for the temperature measurements with cross validation with thermal IR cameras and bi-color pyrometers. Most importantly, we demonstrate that a protection system based on CCD cameras can work and show examples of hot spot detections that stop the plasma pulse. The limits of such a design and the associated constraints on the operations are also presented.

3.
J Nucl Mater ; 415(1): S860-S864, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30976128

RESUMO

We present results of massively parallel kinetic simulations of the triple Langmuir probes at JET. These results indicate that the probes under certain conditions, e.g. during ELMs, can significantly under/over estimate the electron temperature.

4.
Phys Rev Lett ; 105(6): 065001, 2010 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-20867983

RESUMO

Multiple resonances in the edge-localized mode (ELM) frequency (f(ELM)) as a function of the edge safety factor q(95) have been observed for the first time with an applied low n (=1,2) field on the JET tokamak. Without an n=1 field applied, f(ELM) increases slightly from 20 to 30 Hz by varying the q(95) from 4 to 5 in a type-I ELMy H-mode plasma. However, with an n=1 field applied, a strong increase in f(ELM) by a factor of 4-5 has been observed with resonant q(95) values, while the f(ELM) increased only by a factor of 2 for nonresonant values. A model, which assumes that the ELM width is determined by a localized relaxation triggered by an unstable ideal external peeling mode, can qualitatively predict the observed resonances when low n fields are applied.

5.
Phys Rev Lett ; 98(26): 265004, 2007 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-17678097

RESUMO

Type-I edge-localized modes (ELMs) have been mitigated at the JET tokamak using a static external n=1 perturbation field generated by four error field correction coils located far from the plasma. During the application of the n=1 field the ELM frequency increased by a factor of 4 and the amplitude of the D(alpha) signal decreased. The energy loss per ELM normalized to the total stored energy, DeltaW/W, dropped to values below 2%. Transport analyses shows no or only a moderate (up to 20%) degradation of energy confinement time during the ELM mitigation phase.

6.
Phys Rev Lett ; 97(16): 165003, 2006 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-17155405

RESUMO

Systematic measurements on the edge turbulence and turbulent transport have been made by Langmuir probe arrays on TEXTOR under various static Dynamic Ergodic Divertor (DED) configurations. Common features are observed. With the DED, in the ergodic zone the local turbulent flux reverses sign from radially outwards to inwards. The turbulence properties are profoundly modified by energy redistribution in frequency spectra and suppression of large scale eddies. The fluctuation poloidal phase velocity changes direction from electron to ion diamagnetic drift, consistent with the observed reversal of the Er x B flow. In the laminar region, the turbulence is found to react to an observed reduced flow shear.

7.
Phys Rev Lett ; 94(1): 015003, 2005 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-15698091

RESUMO

The first results of the Dynamic Ergodic Divertor in TEXTOR, when operating in the m/n=3/1 mode configuration, are presented. The deeply penetrating external magnetic field perturbation of this configuration increases the toroidal plasma rotation. Staying below the excitation threshold for the m/n=2/1 tearing mode, this toroidal rotation is always in the direction of the plasma current, even if the toroidal projection of the rotating magnetic field perturbation is in the opposite direction. The observed toroidal rotation direction is consistent with a radial electric field, generated by an enhanced electron transport in the ergodic layers near the resonances of the perturbation. This is an effect different from theoretical predictions, which assume a direct coupling between rotating perturbation and plasma to be the dominant effect of momentum transfer.

8.
Phys Rev Lett ; 84(12): 2630-3, 2000 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-11017286

RESUMO

First measurements of temperature fluctuations in a region of high velocity shear show that absolute and normalized fluctuation levels are reduced across the shear layer, a result that is consistent with weak parallel electron thermal conduction in the electron temperature dynamics. The concomitant reduction of temperature, density, and electric field fluctuations reduces the anomalous conducted and convected heat fluxes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...