Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JID Innov ; 3(3): 100191, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37213713

RESUMO

Recessive dystrophic epidermolysis bullosa is a debilitating blistering skin disorder caused by loss-of-function mutations in COL7A1, which encodes type VII collagen, the main component of anchoring fibrils at the dermal-epidermal junction. Although conventional gene therapy approaches through viral vectors have been tested in preclinical and clinical trials, they are limited by transgene size constraints and only support unregulated gene expression. Genome editing could potentially overcome some of these limitations, and CRISPR/Cas9 has already been applied in research studies to restore COL7A1 expression. The delivery of suitable repair templates for the repair of DNA cleaved by Cas9 is still a major challenge, and alternative base editing strategies may offer corrective solutions for certain mutations. We show highly targeted and efficient cytidine deamination and molecular correction of a defined recessive dystrophic epidermolysis bullosa mutation (c.425A>G), leading to restoration of full-length type VII collagen protein expression in primary human fibroblasts and induced pluripotent stem cells. Type VII collagen basement membrane expression and skin architecture were restored with de novo anchoring fibrils identified by electron microscopy in base-edited human recessive dystrophic epidermolysis bullosa grafts recovered from immunodeficient mice. The results show the potential and promise of emerging base editing technologies in tackling inherited disorders with well-defined single nucleotide mutations.

2.
bioRxiv ; 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36909618

RESUMO

Background: Gene editing in induced pluripotent stem (iPS) cells has been hailed to enable new cell therapies for various monogenetic diseases including dystrophic epidermolysis bullosa (DEB). However, manufacturing, efficacy and safety roadblocks have limited the development of genetically corrected, autologous iPS cell-based therapies. Methods: We developed Dystrophic Epidermolysis Bullosa Cell Therapy (DEBCT), a new generation GMP-compatible (cGMP), reproducible, and scalable platform to produce autologous clinical-grade iPS cell-derived organotypic induced skin composite (iSC) grafts to treat incurable wounds of patients lacking type VII collagen (C7). DEBCT uses a combined high-efficiency reprogramming and CRISPR-based genetic correction single step to generate genome scar-free, COL7A1 corrected clonal iPS cells from primary patient fibroblasts. Validated iPS cells are converted into epidermal, dermal and melanocyte progenitors with a novel 2D organoid differentiation protocol, followed by CD49f enrichment and expansion to minimize maturation heterogeneity. iSC product characterization by single cell transcriptomics was followed by mouse xenografting for disease correcting activity at 1 month and toxicology analysis at 1-6 months. Culture-acquired mutations, potential CRISPR-off targets, and cancer-driver variants were evaluated by targeted and whole genome sequencing. Findings: iPS cell-derived iSC grafts were reproducibly generated from four recessive DEB patients with different pathogenic mutations. Organotypic iSC grafts onto immune-compromised mice developed into stable stratified skin with functional C7 restoration. Single cell transcriptomic characterization of iSCs revealed prominent holoclone stem cell signatures in keratinocytes and the recently described Gibbin-dependent signature in dermal fibroblasts. The latter correlated with enhanced graftability. Multiple orthogonal sequencing and subsequent computational approaches identified random and non-oncogenic mutations introduced by the manufacturing process. Toxicology revealed no detectable tumors after 3-6 months in DEBCT-treated mice. Interpretation: DEBCT successfully overcomes previous roadblocks and represents a robust, scalable, and safe cGMP manufacturing platform for production of a CRISPR-corrected autologous organotypic skin graft to heal DEB patient wounds.

3.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36768619

RESUMO

Genodermatoses encompass a wide range of inherited skin diseases, many of which are monogenic. Genodermatoses range in severity and result in early-onset cancers or life-threatening damage to the skin, and there are few curative options. As such, there is a clinical need for single-intervention treatments with curative potential. Here, we discuss the nascent field of gene editing for the treatment of genodermatoses, exploring CRISPR-Cas9 and homology-directed repair, base editing, and prime editing tools for correcting pathogenic mutations. We specifically focus on the optimisation of editing efficiency, the minimisation off-targets edits, and the tools for delivery for potential future therapies. Honing each of these factors is essential for translating gene editing therapies into the clinical setting. Therefore, the aim of this review article is to raise important considerations for investigators aiming to develop gene editing approaches for genodermatoses.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Terapia Genética , Mutação , Reparo de DNA por Recombinação
4.
Sci Rep ; 12(1): 19643, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36385635

RESUMO

Base editing introduces precise single-nucleotide edits in genomic DNA and has the potential to treat genetic diseases such as the blistering skin disease recessive dystrophic epidermolysis bullosa (RDEB), which is characterized by mutations in the COL7A1 gene and type VII collagen (C7) deficiency. Adenine base editors (ABEs) convert A-T base pairs to G-C base pairs without requiring double-stranded DNA breaks or donor DNA templates. Here, we use ABE8e, a recently evolved ABE, to correct primary RDEB patient fibroblasts harboring the recurrent RDEB nonsense mutation c.5047 C > T (p.Arg1683Ter) in exon 54 of COL7A1 and use a next generation sequencing workflow to interrogate post-treatment outcomes. Electroporation of ABE8e mRNA into a bulk population of RDEB patient fibroblasts resulted in remarkably efficient (94.6%) correction of the pathogenic allele, restoring COL7A1 mRNA and expression of C7 protein in western blots and in 3D skin constructs. Off-target DNA analysis did not detect off-target editing in treated patient-derived fibroblasts and there was no detectable increase in A-to-I changes in the RNA. Taken together, we have established a highly efficient pipeline for gene correction in primary fibroblasts with a favorable safety profile. This work lays a foundation for developing therapies for RDEB patients using ex vivo or in vivo base editing strategies.


Assuntos
Códon sem Sentido , Epidermólise Bolhosa Distrófica , Humanos , Códon sem Sentido/genética , Adenina , Colágeno Tipo VII/genética , Colágeno Tipo VII/metabolismo , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/terapia , Epidermólise Bolhosa Distrófica/patologia , Mutação
5.
Nat Biomed Eng ; 6(4): 351-371, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35478225

RESUMO

Engineered tissues can be used to model human pathophysiology and test the efficacy and safety of drugs. Yet, to model whole-body physiology and systemic diseases, engineered tissues with preserved phenotypes need to physiologically communicate. Here we report the development and applicability of a tissue-chip system in which matured human heart, liver, bone and skin tissue niches are linked by recirculating vascular flow to allow for the recapitulation of interdependent organ functions. Each tissue is cultured in its own optimized environment and is separated from the common vascular flow by a selectively permeable endothelial barrier. The interlinked tissues maintained their molecular, structural and functional phenotypes over 4 weeks of culture, recapitulated the pharmacokinetic and pharmacodynamic profiles of doxorubicin in humans, allowed for the identification of early miRNA biomarkers of cardiotoxicity, and increased the predictive values of clinically observed miRNA responses relative to tissues cultured in isolation and to fluidically interlinked tissues in the absence of endothelial barriers. Vascularly linked and phenotypically stable matured human tissues may facilitate the clinical applicability of tissue chips.


Assuntos
Fígado , MicroRNAs , Coração , Pele
6.
Bioeng Transl Med ; 7(1): e10247, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35111948

RESUMO

Atopic dermatitis (AD), driven by interleukins (IL-4/IL-13), is a chronic inflammatory skin disease characterized by intensive pruritus. However, it is unclear how immune signaling and sensory response pathways cross talk with each other. We differentiated itch sensory neuron-like cells (ISNLCs) from iPSC lines. These ISNLCs displayed neural markers and action potentials and responded specifically to itch-specific stimuli. These ISNLCs expressed receptors specific for IL-4/IL-13 and were activated directly by the two cytokines. We successfully innervated these ISNLCs into full thickness human skin constructs. These innervated skin grafts can be used in clinical applications such as wound healing. Moreover, the availability of such innervated skin models will be valuable to develop drugs to treat skin diseases such as AD.

7.
Int J Mol Sci ; 23(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35008996

RESUMO

Cancer is a devastating condition characterised by the uncontrolled division of cells with many forms remaining resistant to current treatment. A hallmark of cancer is the gradual accumulation of somatic mutations which drive tumorigenesis in cancerous cells, creating a mutation landscape distinctive to a cancer type, an individual patient or even a single tumour lesion. Gene editing with CRISPR/Cas9-based tools now enables the precise and permanent targeting of mutations and offers an opportunity to harness this technology to target oncogenic mutations. However, the development of safe and effective gene editing therapies for cancer relies on careful design to spare normal cells and avoid introducing other mutations. This article aims to describe recent advancements in cancer-selective treatments based on the CRISPR/Cas9 system, especially focusing on strategies for targeted delivery of the CRISPR/Cas9 machinery to affected cells, controlling Cas9 expression in tissues of interest and disrupting cancer-specific genes to result in selective death of malignant cells.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Terapia Genética , Neoplasias/genética , Neoplasias/terapia , Animais , Biomarcadores Tumorais , Terapia Combinada , Suscetibilidade a Doenças , Expressão Gênica , Regulação da Expressão Gênica , Técnicas de Transferência de Genes , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Vetores Genéticos/classificação , Vetores Genéticos/genética , Humanos , Oncogenes , Especificidade de Órgãos , Transgenes
8.
Am J Med Genet A ; 185(11): 3390-3400, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34435747

RESUMO

Recessive dystrophic epidermolysis bullosa (RDEB) is a rare genodermatosis caused by mutations in the gene coding for type VII collagen (COL7A1). More than 800 different pathogenic mutations in COL7A1 have been described to date; however, the ancestral origins of many of these mutations have not been precisely identified. In this study, 32 RDEB patient samples from the Southwestern United States, Mexico, Chile, and Colombia carrying common mutations in the COL7A1 gene were investigated to determine the origins of these mutations and the extent to which shared ancestry contributes to disease prevalence. The results demonstrate both shared European and American origins of RDEB mutations in distinct populations in the Americas and suggest the influence of Sephardic ancestry in at least some RDEB mutations of European origins. Knowledge of ancestry and relatedness among RDEB patient populations will be crucial for the development of future clinical trials and the advancement of novel therapeutics.


Assuntos
Colágeno Tipo VII/genética , Epidermólise Bolhosa Distrófica/genética , Hispânico ou Latino/genética , Judeus/genética , Chile/epidemiologia , Colômbia/epidemiologia , Epidermólise Bolhosa Distrófica/epidemiologia , Feminino , Genes Recessivos/genética , Humanos , Masculino , México/epidemiologia , Fenótipo , Estados Unidos/epidemiologia
9.
Nat Cancer ; 2(8): 803-818, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-35122025

RESUMO

Unlike several other tumor types, prostate cancer rarely responds to immune checkpoint blockade (ICB). To define tumor cell intrinsic factors that contribute to prostate cancer progression and resistance to ICB, we analyzed prostate cancer epithelial cells from castration-sensitive and -resistant samples using implanted tumors, cell lines, transgenic models and human tissue. We found that castration resulted in increased expression of interleukin-8 (IL-8) and its probable murine homolog Cxcl15 in prostate epithelial cells. We showed that these chemokines drove subsequent intratumoral infiltration of tumor-promoting polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), which was largely abrogated when IL-8 signaling was blocked genetically or pharmacologically. Targeting IL-8 signaling in combination with ICB delayed the onset of castration resistance and increased the density of polyfunctional CD8 T cells in tumors. Our findings establish a novel mechanism by which castration mediates IL-8 secretion and subsequent PMN-MDSC infiltration, and highlight blockade of the IL-8/CXCR2 axis as a potential therapeutic intervention.


Assuntos
Células Supressoras Mieloides , Neoplasias da Próstata , Animais , Castração , Humanos , Interleucina-8/genética , Masculino , Camundongos , Próstata , Neoplasias da Próstata/genética
11.
Sci Rep ; 10(1): 4123, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32139717

RESUMO

Drug screening studies for inflammatory skin diseases are currently performed using model systems that only partially recapitulate human diseased skin. Here, we developed a new strategy to incorporate T cells into human 3D skin constructs (HSCs), which enabled us to closely monitor and quantitate T cell responses. We found that the epidermis promotes the activation and infiltration of T cells into the skin, and provides a directional cue for their selective migration towards the epidermis. We established a psoriatic HSC (pHSC) by incorporating polarized Th1/Th17 cells or CCR6+CLA+ T cells derived from psoriasis patients into the constructs. These pHSCs showed a psoriatic epidermal phenotype and characteristic cytokine profiles, and responded to various classes of psoriasis drugs, highlighting the potential utility of our model as a drug screening platform. Taken together, we developed an advanced immunocompetent 3D skin model to investigate epidermal-T cell interactions and to understand the pathophysiology of inflammatory skin diseases in a human-relevant and patient-specific context.


Assuntos
Psoríase/imunologia , Pele/citologia , Pele/metabolismo , Células Cultivadas , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Fibroblastos/citologia , Fibroblastos/imunologia , Fibroblastos/metabolismo , Citometria de Fluxo , Humanos , Queratinócitos/citologia , Queratinócitos/imunologia , Queratinócitos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores CCR6/genética , Receptores CCR6/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Pele/imunologia , Células Th1/metabolismo , Células Th17/metabolismo
12.
Int J Mol Sci ; 22(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383666

RESUMO

The early onset and rapid progression of cutaneous squamous cell carcinoma (cSCC) leads to high mortality rates in individuals with recessive dystrophic epidermolysis bullosa (RDEB). Currently, the molecular mechanisms underlying cSCC development in RDEB are not well understood and there are limited therapeutic options. RDEB-cSCC arises through the accumulation of genetic mutations; however, previous work analyzing gene expression profiles have not been able to explain its aggressive nature. Therefore, we generated a model to study RDEB-cSCC development using cellular reprograming and re-differentiation technology. We compared RDEB-cSCC to cSCC that were first reprogrammed into induced pluripotent stem cells (RDEB-cSCC-iPSC) and then differentiated back to keratinocytes (RDEB-cSCC-iKC). The RDEB-cSCC-iKC cell population had reduced proliferative capacities in vitro and in vivo, suggesting that reprogramming and re-differentiation leads to functional changes. Finally, we performed RNA-seq analysis for RDEB-cSCC, RDEB-cSCC-iPSC, and RDEB-cSCC-iKC and identified different gene expression signatures between these cell populations. Taken together, this cell culture model offers a valuable tool to study cSCC and provides a novel way to identify potential therapeutic targets for RDEB-cSCC.


Assuntos
Carcinoma de Células Escamosas/etiologia , Diferenciação Celular/genética , Reprogramação Celular/genética , Colágeno Tipo VII/genética , Epidermólise Bolhosa Distrófica/genética , Genes Recessivos , Mutação , Animais , Biomarcadores , Carcinoma de Células Escamosas/patologia , Linhagem Celular , Transformação Celular Neoplásica , Células Cultivadas , Biologia Computacional/métodos , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Queratinócitos/citologia , Queratinócitos/metabolismo , Camundongos , Transcriptoma
13.
Proc Natl Acad Sci U S A ; 116(52): 26846-26852, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31818947

RESUMO

Recessive dystrophic epidermolysis bullosa (RDEB) is a severe inherited skin disorder caused by mutations in the COL7A1 gene encoding type VII collagen (C7). The spectrum of severity depends on the type of mutation in the COL7A1 gene. C7 is the major constituent of anchoring fibrils (AFs) at the basement membrane zone (BMZ). Patients with RDEB lack functional C7 and have severely impaired dermal-epidermal stability, resulting in extensive blistering and open wounds on the skin that greatly affect the patient's quality of life. There are currently no therapies approved for the treatment of RDEB. Here, we demonstrated the correction of mutations in exon 19 (c.2470insG) and exon 32 (c.3948insT) in the COL7A1 gene through homology-directed repair (HDR). We used the clustered regulatory interspaced short palindromic repeats (CRISPR) Cas9-gRNAs system to modify induced pluripotent stem cells (iPSCs) derived from patients with RDEB in both the heterozygous and homozygous states. Three-dimensional human skin equivalents (HSEs) were generated from gene-corrected iPSCs, differentiated into keratinocytes (KCs) and fibroblasts (FBs), and grafted onto immunodeficient mice, which showed normal expression of C7 at the BMZ as well as restored AFs 2 mo postgrafting. Safety assessment for potential off-target Cas9 cleavage activity did not reveal any unintended nuclease activity. Our findings represent a crucial advance for clinical applications of innovative autologous stem cell-based therapies for RDEB.

14.
Nat Commun ; 9(1): 5301, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30546011

RESUMO

Human skin constructs (HSCs) have the potential to provide an effective therapy for patients with significant skin injuries and to enable human-relevant drug screening for skin diseases; however, the incorporation of engineered skin appendages, such as hair follicles (HFs), into HSCs remains a major challenge. Here, we demonstrate a biomimetic approach for generation of human HFs within HSCs by recapitulating the physiological 3D organization of cells in the HF microenvironment using 3D-printed molds. Overexpression of Lef-1 in dermal papilla cells (DPC) restores the intact DPC transcriptional signature and significantly enhances the efficiency of HF differentiation in HSCs. Furthermore, vascularization of hair-bearing HSCs prior to engraftment allows for efficient human hair growth in immunodeficient mice. The ability to regenerate an entire HF from cultured human cells will have a transformative impact on the medical management of different types of alopecia, as well as chronic wounds, which represent major unmet medical needs.


Assuntos
Alopecia/terapia , Derme/citologia , Folículo Piloso/crescimento & desenvolvimento , Folículo Piloso/transplante , Engenharia Tecidual/métodos , Alopecia/patologia , Animais , Biomimética , Diferenciação Celular , Células Cultivadas , Folículo Piloso/citologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Fator 1 de Ligação ao Facilitador Linfoide/biossíntese , Masculino , Camundongos , Camundongos Nus , Transplante Heterólogo
15.
Exp Biol Med (Maywood) ; 242(17): 1657-1668, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28592171

RESUMO

Many diseases, as well as side effects of drugs, manifest themselves through skin symptoms. Skin is a complex tissue that hosts various specialized cell types and performs many roles including physical barrier, immune and sensory functions. Therefore, modeling skin in vitro presents technical challenges for tissue engineering. Since the first attempts at engineering human epidermis in 1970s, there has been a growing interest in generating full-thickness skin constructs mimicking physiological functions by incorporating various skin components, such as vasculature and melanocytes for pigmentation. Development of biomimetic in vitro human skin models with these physiological functions provides a new tool for drug discovery, disease modeling, regenerative medicine and basic research for skin biology. This goal, however, has long been delayed by the limited availability of different cell types, the challenges in establishing co-culture conditions, and the ability to recapitulate the 3D anatomy of the skin. Recent breakthroughs in induced pluripotent stem cell (iPSC) technology and microfabrication techniques such as 3D-printing have allowed for building more reliable and complex in vitro skin models for pharmaceutical screening. In this review, we focus on the current developments and prevailing challenges in generating skin constructs with vasculature, skin appendages such as hair follicles, pigmentation, immune response, innervation, and hypodermis. Furthermore, we discuss the promising advances that iPSC technology offers in order to generate in vitro models of genetic skin diseases, such as epidermolysis bullosa and psoriasis. We also discuss how future integration of the next generation human skin constructs onto microfluidic platforms along with other tissues could revolutionize the early stages of drug development by creating reliable evaluation of patient-specific effects of pharmaceutical agents. Impact statement Skin is a complex tissue that hosts various specialized cell types and performs many roles including barrier, immune, and sensory functions. For human-relevant drug testing, there has been a growing interest in building more physiological skin constructs by incorporating different skin components, such as vasculature, appendages, pigment, innervation, and adipose tissue. This paper provides an overview of the strategies to build complex human skin constructs that can faithfully recapitulate human skin and thus can be used in drug development targeting skin diseases. In particular, we discuss recent developments and remaining challenges in incorporating various skin components, availability of iPSC-derived skin cell types and in vitro skin disease models. In addition, we provide insights on the future integration of these complex skin models with other organs on microfluidic platforms as well as potential readout technologies for high-throughput drug screening.


Assuntos
Descoberta de Drogas/métodos , Procedimentos Analíticos em Microchip/métodos , Microfluídica/métodos , Medicina Regenerativa/métodos , Dermatopatias/patologia , Pele/metabolismo , Engenharia Tecidual/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Dispositivos Lab-On-A-Chip
16.
J Invest Dermatol ; 136(2): 516-525, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26967482

RESUMO

Collagen XVII is a hemidesmosomal anchorage molecule of basal keratinocytes that promotes stable epidermal-dermal adhesion. One unique feature of collagen XVII is that its collagenous ectodomain is constitutively released from the cell surface by a disintegrin and metalloproteinases (ADAMs) through cleavage within its juxtamembranous linker domain. The responsivity of shedding to environmental stimuli and the high stability of the released ectodomain in several tissues suggests functions in cell detachment during epidermal morphogenesis, differentiation, and regeneration, but its physiologic relevance remained elusive. To investigate this, we generated knock-in mice, which express a functional non-sheddable collagen XVII mutant, with a 41 amino acid deletion in the linker domain spanning all ADAM cleavage sites. These mice showed no macroscopic phenotypic changes, were fertile, and had a normal lifespan. Prevention of collagen XVII shedding interfered neither with skin development nor with epidermal adhesion and differentiation. However, it led to faster wound closure due to accelerated re-epithelialization at the wound edges where shedding of wild-type collagen XVII was strongly induced. Taken together, we have successfully generated a functional non-shedding collagen XVII mouse model, which represents a powerful tool to investigate the pathophysiologic relevance of ectodomain shedding during wound regeneration and cancer invasion.


Assuntos
Proliferação de Células/fisiologia , Micropartículas Derivadas de Células/metabolismo , Colágeno Tipo VII/metabolismo , Epiderme/metabolismo , Cicatrização/fisiologia , Animais , Membrana Celular/metabolismo , Epiderme/patologia , Humanos , Imuno-Histoquímica , Queratinócitos/citologia , Queratinócitos/metabolismo , Camundongos , Modelos Animais , Estrutura Terciária de Proteína
17.
J Invest Dermatol ; 136(7): 1346-1354, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26994967

RESUMO

Patients with recessive dystrophic epidermolysis bullosa (RDEB) lack type VII collagen and therefore have severely impaired dermal-epidermal stability causing recurrent skin and mucosal blistering. There is currently no specific approved treatment for RDEB. We present preclinical data showing that intradermal injections of genetically corrected patient-derived RDEB fibroblasts using a Good Manufacturing Practices grade self-inactivating COL7A1 retroviral vector reverse the disease phenotype in a xenograft model in nude mice. We obtained 50% transduction efficiency in primary human RDEB fibroblasts with an average low copy number (range = 1-2) of integrated provirus. Transduced fibroblasts showed strong type VII collagen re-expression, improved adhesion properties, normal proliferative capabilities, and viability in vitro. We show that a single intradermal injection of 3 × 10(6) genetically corrected RDEB fibroblasts beneath RDEB skin equivalents grafted onto mice allows type VII collagen deposition, anchoring fibril formation at the dermal-epidermal junction, and improved dermal-epidermal adherence 2 months after treatment, supporting functional correction in vivo. Gene-corrected fibroblasts previously showed no tumorigenicity. These data show the efficacy and safety of gene-corrected fibroblast therapy using a self-inactivating vector that has now been good manufacturing grade-certified and pave the way for clinical translation to treat nonhealing wounds in RDEB patients.


Assuntos
Colágeno Tipo VII/genética , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/terapia , Fibroblastos/metabolismo , Terapia Genética , Animais , Adesão Celular , Proliferação de Células , Colágeno Tipo VII/metabolismo , Fibroblastos/citologia , Genes Recessivos , Vetores Genéticos , Células HEK293 , Humanos , Queratinócitos/citologia , Camundongos , Camundongos Nus , Mutação , Transplante de Neoplasias , Proteínas Recombinantes/genética , Retroviridae , Pele/metabolismo , Temperatura
18.
J Invest Dermatol ; 136(5): 1031-1041, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26827763

RESUMO

Transmembrane collagen XVII is traditionally viewed as an important hemidesmosomal attachment component that promotes stable dermal-epidermal adhesion in the skin. However, its expression is highly elevated at the leading edges of cutaneous wounds or invasive carcinomas, suggesting alternative functions in cell migration. The collagenous ectodomain of collagen XVII is constitutively shed from the cell surface by a disintegrin and metalloproteinases, and this shedding is strongly induced during wound healing. Recently, we investigated the physiological relevance of collagen XVII shedding by generating knock-in mice, which exclusively express a functional non-sheddable collagen XVII mutant. Prevention of ectodomain shedding in these mice caused no spontaneous phenotype in resting skin, but accelerated re-epithelialization on skin wounding. Here, we investigated the mechanistic function of shedding during wound healing. Using the non-shedding collagen XVII mice as a model, we uncovered ectodomain shedding as a highly dynamic modulator of in vivo proliferation and motility of activated keratinocytes through tight coordination of α6ß4 integrin-laminin-332 interactions and dampening of mechanistic target of rapamycin signaling at the wound edges. Thus, our studies identify ectodomain shedding of collagen XVII as an interactive platform that translates shedding into a signal for directed cell growth and motility during skin regeneration.


Assuntos
Autoantígenos/metabolismo , Regulação da Expressão Gênica , Queratinócitos/citologia , Colágenos não Fibrilares/metabolismo , Reepitelização/genética , Serina-Treonina Quinases TOR/genética , Animais , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Humanos , Queratinócitos/metabolismo , Camundongos , Camundongos Knockout , Distribuição Aleatória , Transdução de Sinais , Ferimentos e Lesões/genética , Ferimentos e Lesões/patologia , Colágeno Tipo XVII
20.
J Invest Dermatol ; 135(5): 1303-1310, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25310407

RESUMO

Bullous pemphigoid (BP) is the most common autoimmune subepidermal blistering skin disease with a characteristic of pruritus and blistering. BP patients carry inflammation-triggering autoantibodies against the collagen XVII (ColXVII, also known as BP180) juxtamembraneous extracellular noncollagenous 16A (NC16A) domain involved in ectodomain shedding. Deletion of the corresponding NC14A region in a genetically modified mouse model (ΔNC14A) decreased the amount of ColXVII in skin, but it did not prevent ectodomain shedding. Newborn ΔNC14A mice had no macroscopic phenotypic changes. However, subepidermal microblisters, rudimentary hemidesmosomes, and loose basement membrane zone were observed by microscopy. ΔNC14A mice grow normally, but at around 3 months of age they start to scratch themselves and develop crusted erosions. Furthermore, perilesional eosinophilic infiltrations in the skin, eosinophilia, and elevated serum IgE levels are detected. Despite the removal of the major BP epitope region, ΔNC14A mice developed IgG and IgA autoantibodies with subepidermal reactivity, indicating autoimmunization against a dermo-epidermal junction component. Moreover, IgG autoantibodies recognized a 180-kDa keratinocyte protein, which was sensitive to collagenase digestion. We show here that ΔNC14A mice provide a highly reproducible BP-related mouse model with spontaneous breakage of self-tolerance and development of autoantibodies.


Assuntos
Autoantígenos/genética , Autoimunidade/genética , Vesícula/genética , Epitopos/genética , Deleção de Genes , Colágenos não Fibrilares/genética , Penfigoide Bolhoso/genética , Prurido/genética , Animais , Autoanticorpos/sangue , Autoantígenos/fisiologia , Autoimunidade/fisiologia , Vesícula/fisiopatologia , Células Cultivadas , Modelos Animais de Doenças , Epitopos/fisiologia , Queratinócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Colágenos não Fibrilares/fisiologia , Penfigoide Bolhoso/patologia , Penfigoide Bolhoso/fisiopatologia , Fenótipo , Prurido/fisiopatologia , Pele/patologia , Colágeno Tipo XVII
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...