Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256847

RESUMO

The popularity of oats (Avena sativa) continues to increase in the cereal market due to their health benefits. The recent domestication of Avena magna, a Moroccan oat, presents an opportunity to enhance these benefits due to their higher nutritional composition. As the impact of microclimates on A. magna grain composition has not been explored, this study evaluates twelve A. magna ssp. domestica lines across three Moroccan locations, providing new data into microclimate effects on key grain characteristics. Significant variability is observed among lines and sites for nutrients, with mean protein, fat, and dietary fiber contents at 23.1%, 8.38%, and 7.23%, respectively. High protein levels, reaching 27.1% in Alnif and 26.5% in El Kbab, surpass the 'Avery' control (21.7% and 24.2%) in these environments. Groats from Bouchane exhibited elevated fat and fiber contents (10.2% and 9.94%) compared to the control (8.83% and 7.36%). While ß-glucan levels remain consistent at 2.53%, a negative correlation between protein content, fat, and starch was observed. A. magna lines exhibited higher levels of iron (7.50 × 10-3 g/100 g DM) and zinc (3.40 × 10-3 g/100 g DM) compared to other cereals. Environmental conditions significantly influence grain quality, with El Kbab yielding higher protein and ash contents, as well as Bouchane having increased fat, fiber, and starch. Stability analysis indicates that fat content was more influenced by the environment, while 25% of protein variability is influenced by genetics. Lines AT3, AT5, AT6, AT13, and AT15 consistently exceeds both the mean for protein and fiber across all sites, emphasizing their potential nutritional value. This study highlights the potential of A. magna ssp. domestica to address nutritional insecurity, particularly for protein, iron, and zinc in domestic settings.

2.
Front Plant Sci ; 11: 624, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32523593

RESUMO

Atriplex hortensis (2n = 2x = 18, 1C genome size ∼1.1 gigabases), also known as garden orach and mountain-spinach, is a highly nutritious, broadleaf annual of the Amaranthaceae-Chenopodiaceae alliance (Chenopodiaceae sensu stricto, subfam. Chenopodioideae) that has spread in cultivation from its native primary domestication area in Eurasia to other temperate and subtropical regions worldwide. Atriplex L. is a highly complex but, as understood now, a monophyletic group of mainly halophytic and/or xerophytic plants, of which A. hortensis has been a vegetable of minor importance in some areas of Eurasia (from Central Asia to the Mediterranean) at least since antiquity. Nonetheless, it is a crop with tremendous nutritional potential due primarily to its exceptional leaf and seed protein quantities (approaching 30%) and quality (high levels of lysine). Although there is some literature describing the taxonomy and production of A. hortensis, there is a general lack of genetic and genomic data that would otherwise help elucidate the genetic variation, phylogenetic positioning, and future potential of the species. Here, we report the assembly of the first high-quality, chromosome-scale reference genome for A. hortensis cv. "Golden." Long-read data from Oxford Nanopore's MinION DNA sequencer was assembled with the program Canu and polished with Illumina short reads. Contigs were scaffolded to chromosome scale using chromatin-proximity maps (Hi-C) yielding a final assembly containing 1,325 scaffolds with a N50 of 98.9 Mb - with 94.7% of the assembly represented in the nine largest, chromosome-scale scaffolds. Sixty-six percent of the genome was classified as highly repetitive DNA, with the most common repetitive elements being Gypsy-(32%) and Copia-like (11%) long-terminal repeats. The annotation was completed using MAKER which identified 37,083 gene models and 2,555 tRNA genes. Completeness of the genome, assessed using the Benchmarking Universal Single Copy Orthologs (BUSCO) metric, identified 97.5% of the conserved orthologs as complete, with only 2.2% being duplicated, reflecting the diploid nature of A. hortensis. A resequencing panel of 21 wild, unimproved and cultivated A. hortensis accessions revealed three distinct populations with little variation within subpopulations. These resources provide vital information to better understand A. hortensis and facilitate future study.

3.
BMC Biol ; 17(1): 92, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31757219

RESUMO

BACKGROUND: Cultivated hexaploid oat (Common oat; Avena sativa) has held a significant place within the global crop community for centuries; although its cultivation has decreased over the past century, its nutritional benefits have garnered increased interest for human consumption. We report the development of fully annotated, chromosome-scale assemblies for the extant progenitor species of the As- and Cp-subgenomes, Avena atlantica and Avena eriantha respectively. The diploid Avena species serve as important genetic resources for improving common oat's adaptive and food quality characteristics. RESULTS: The A. atlantica and A. eriantha genome assemblies span 3.69 and 3.78 Gb with an N50 of 513 and 535 Mb, respectively. Annotation of the genomes, using sequenced transcriptomes, identified ~ 50,000 gene models in each species-including 2965 resistance gene analogs across both species. Analysis of these assemblies classified much of each genome as repetitive sequence (~ 83%), including species-specific, centromeric-specific, and telomeric-specific repeats. LTR retrotransposons make up most of the classified elements. Genome-wide syntenic comparisons with other members of the Pooideae revealed orthologous relationships, while comparisons with genetic maps from common oat clarified subgenome origins for each of the 21 hexaploid linkage groups. The utility of the diploid genomes was demonstrated by identifying putative candidate genes for flowering time (HD3A) and crown rust resistance (Pc91). We also investigate the phylogenetic relationships among other A- and C-genome Avena species. CONCLUSIONS: The genomes we report here are the first chromosome-scale assemblies for the tribe Poeae, subtribe Aveninae. Our analyses provide important insight into the evolution and complexity of common hexaploid oat, including subgenome origin, homoeologous relationships, and major intra- and intergenomic rearrangements. They also provide the annotation framework needed to accelerate gene discovery and plant breeding.


Assuntos
Avena/genética , Cromossomos de Plantas/genética , Genoma de Planta , Diploide , Ligação Genética , Anotação de Sequência Molecular , Sintenia
4.
PLoS One ; 13(11): e0204757, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30496187

RESUMO

One of the biggest challenges for genetic studies on natural or unstructured populations is the unbalanced datasets where individuals are measured at different times and environments. This problem is also common in crop and animal breeding where many individuals are only evaluated for a single year and large but unbalanced datasets can be generated over multiple years. Many wheat breeding programs have focused on increasing bread wheat (Triticum aestivum L.) yield, but processing and end-use quality are critical components when considering its use in feeding the rising population of the next century. The challenges with end-use quality trait improvements are high cost and seed amounts for testing, the latter making selection in early breeding populations impossible. Here we describe a novel approach to identify marker-trait associations within a breeding program using a meta-genome wide association study (GWAS), which combines GWAS analysis from multi-year unbalanced breeding nurseries, in a manner reflecting meta-GWAS in humans. This method facilitated mapping of processing and end-use quality phenotypes from advanced breeding lines (n = 4,095) of the CIMMYT bread wheat breeding program from 2009 to 2014. Using the meta-GWAS we identified marker-trait associations, allele effects, candidate genes, and can select using markers generated in this process. Finally, the scope of this approach can be broadly applied in 'breeding-assisted genomics' across many crops to greatly increase our functional understanding of plant genomes.


Assuntos
Pão , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Triticum/genética , Triticum/crescimento & desenvolvimento
5.
Plant Genome ; 9(2)2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27898836

RESUMO

Six hundred thirty five oat ( L.) lines and 4561 single-nucleotide polymorphism (SNP) loci were used to evaluate population structure, linkage disequilibrium (LD), and genotype-phenotype association with heading date. The first five principal components (PCs) accounted for 25.3% of genetic variation. Neither the eigenvalues of the first 25 PCs nor the cross-validation errors from = 1 to 20 model-based analyses suggested a structured population. However, the PC and = 2 model-based analyses supported clustering of lines on spring oat vs. southern United States origin, accounting for 16% of genetic variation ( < 0.0001). Single-locus -statistic () in the highest 1% of the distribution suggested linkage groups that may be differentiated between the two population subgroups. Population structure and kinship-corrected LD of = 0.10 was observed at an average pairwise distance of 0.44 cM (0.71 and 2.64 cM within spring and southern oat, respectively). On most linkage groups LD decay was slower within southern lines than within the spring lines. A notable exception was found on linkage group Mrg28, where LD decay was substantially slower in the spring subpopulation. It is speculated that this may be caused by a heterogeneous translocation event on this chromosome. Association with heading date was most consistent across location-years on linkage groups Mrg02, Mrg12, Mrg13, and Mrg24.


Assuntos
Adaptação Fisiológica/genética , Avena/genética , Metagenômica , Estudos de Associação Genética , Variação Genética , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único/genética
6.
PLoS One ; 11(5): e0155376, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27175781

RESUMO

Barley yellow dwarf viruses (BYDVs) are responsible for the disease barley yellow dwarf (BYD) and affect many cereals including oat (Avena sativa L.). Until recently, the molecular marker technology in oat has not allowed for many marker-trait association studies to determine the genetic mechanisms for tolerance. A genome-wide association study (GWAS) was performed on 428 spring oat lines using a recently developed high-density oat single nucleotide polymorphism (SNP) array as well as a SNP-based consensus map. Marker-trait associations were performed using a Q-K mixed model approach to control for population structure and relatedness. Six significant SNP-trait associations representing two QTL were found on chromosomes 3C (Mrg17) and 18D (Mrg04). This is the first report of BYDV tolerance QTL on chromosome 3C (Mrg17) and 18D (Mrg04). Haplotypes using the two QTL were evaluated and distinct classes for tolerance were identified based on the number of favorable alleles. A large number of lines carrying both favorable alleles were observed in the panel.


Assuntos
Avena/genética , Avena/virologia , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Luteovirus/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/virologia , Alelos , Mapeamento Cromossômico , Genética Populacional , Genoma de Planta , Genótipo , Haplótipos , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Característica Quantitativa Herdável
7.
Phytopathology ; 105(2): 239-45, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25121640

RESUMO

Developing oat cultivars with partial resistance to crown rust would be beneficial and cost-effective for disease management. Two recombinant inbred-line populations were generated by crossing the susceptible cultivar Provena with two partially resistant sources, CDC Boyer and breeding line 94197A1-9-2-2-2-5. A third mapping population was generated by crossing the partially resistant sources to validate the quantitative trait locus (QTL) results. The three populations were evaluated for crown rust severity in the field at Louisiana State University (LSU) in 2009 and 2010 and at the Cereal Disease Laboratory (CDL) in St. Paul, MN, in 2009, 2010, and 2011. An iSelect platform assay containing 5,744 oat single nucleotide polymorphisms was used to genotype the populations. From the 2009 CDL test, linkage analyses revealed two QTLs for partial resistance in the Provena/CDC Boyer population on chromosome 19A. One of the 19A QTLs was also detected in the 2009 LSU test. Another QTL was detected on chromosome 12D in the CDL 2009 test. In the Provena/94197A1-9-2-2-2-5 population, only one QTL was detected, on chromosome 13A, in the CDL 2011 test. The 13A QTL from the Provena/94197A1-9-2-2-2-5 population was validated in the CDC Boyer/94197A1-9-2-2-2-5 population in the CDL 2010 and 2011 tests. Comparative analysis of the significant marker sequences with the rice genome database revealed 15 candidate genes for disease resistance on chromosomes 4 and 6 of rice. These genes could be potential targets for cloning from the two resistant parents.


Assuntos
Avena/genética , Basidiomycota/fisiologia , Resistência à Doença/genética , Doenças das Plantas/imunologia , Locos de Características Quantitativas/genética , Avena/imunologia , Avena/microbiologia , Mapeamento Cromossômico , Ligação Genética , Marcadores Genéticos/genética , Genótipo , Louisiana , Fenótipo , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Homologia de Sequência
8.
BMC Plant Biol ; 14: 250, 2014 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-25260759

RESUMO

BACKGROUND: Crown rust, caused by Puccinia coronata f. sp. avenae, is the most important disease of oat worldwide. Adult plant resistance (APR), based upon partial resistance, has proven to be a durable rust management strategy in other cereal rust pathosystems. The crown rust APR in the oat line MN841801 has been effective for more than 30 years. The genetic basis of this APR was studied under field conditions in three recombinant inbred line (RIL) populations: 1) AC Assiniboia/MN841801, 2) AC Medallion/MN841801, and 3) Makuru/MN841801. The populations were evaluated for crown rust resistance with the crown rust isolate CR251 (race BRBB) in multiple environments. The 6 K oat and 90 K wheat Illumina Infinium single nucleotide polymorphism (SNP) arrays were used for genotyping the AC Assiniboia/MN841801 population. KASP assays were designed for selected SNPs and genotyped on the other two populations. RESULTS: This study reports a high density genetic linkage map constructed with oat and wheat SNP markers in the AC Assiniboia/MN841801 RIL population. Most wheat SNPs were monomorphic in the oat population. However the polymorphic wheat SNPs could be scored accurately and integrated well into the linkage map. A major quantitative trait locus (QTL) on oat chromosome 14D, designated QPc.crc-14D, explained up to 76% of the APR phenotypic variance. This QTL is flanked by two SNP markers, GMI_GBS_90753 and GMI_ES14_c1439_83. QPc.crc-14D was validated in the populations AC Medallion/MN841801 and Makuru/MN841801. CONCLUSIONS: We report the first APR QTL in oat with a large and consistent effect. QPc.crc-14D was statistically significant in all environments tested in each of the three oat populations. QPc.crc-14D is a suitable candidate for use in marker-assisted breeding and also an excellent target for map-based cloning. This is also the first study to use the 90 K wheat Infinium SNP array on oat for marker development and comparative mapping. The Infinium SNP array is a useful tool for saturating oat maps with markers. Synteny with wheat suggests that QPc.crc-14D is orthologous with the stripe rust APR gene Yr16 in wheat.


Assuntos
Avena/genética , Resistência à Doença/genética , Locos de Características Quantitativas/genética , Genótipo , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único/genética
9.
Theor Appl Genet ; 127(9): 2051-64, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25119868

RESUMO

KEY MESSAGE: A high-resolution genetic linkage map of B. oleracea was developed from a B. napus SNP array. The work will facilitate genetic and evolutionary studies in Brassicaceae. A broccoli population, VI-158 × BNC, consisting of 150 F2:3 families was used to create a saturated Brassica oleracea (diploid: CC) linkage map using a recently developed rapeseed (Brassica napus) (tetraploid: AACC) Illumina Infinium single nucleotide polymorphism (SNP) array. The map consisted of 547 non-redundant SNP markers spanning 948.1 cM across nine chromosomes with an average interval size of 1.7 cM. As the SNPs are anchored to the genomic reference sequence of the rapid cycling B. oleracea TO1000, we were able to estimate that the map provides 96 % coverage of the diploid genome. Carotenoid analysis of 2 years data identified 3 QTLs on two chromosomes that are associated with up to half of the phenotypic variation associated with the accumulation of total or individual compounds. By searching the genome sequences of the two related diploid species (B. oleracea and B. rapa), we further identified putative carotenoid candidate genes in the region of these QTLs. This is the first description of the use of a B. napus SNP array to rapidly construct high-density genetic linkage maps of one of the constituent diploid species. The unambiguous nature of these markers with regard to genomic sequences provides evidence to the nature of genes underlying the QTL, and demonstrates the value and impact this resource will have on Brassica research.


Assuntos
Brassica/genética , Mapeamento Cromossômico , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Carotenoides/genética , DNA de Plantas/genética , Ligação Genética , Genoma de Planta
10.
Trends Plant Sci ; 19(8): 485-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25087061

RESUMO

The Plant Pathways Elucidation Project (P2EP) is a multi-institutional project that utilizes cutting-edge genomics research and related disciplines to provide greater understanding of the relation between plant-pathway products and human health. P2EP includes an educational focus to expose student scholars to the rigors of research, while harnessing open collaborations between academia and industry.


Assuntos
Comunicação Interdisciplinar , Redes e Vias Metabólicas , Plantas/metabolismo , Humanos , Indústrias , Bases de Conhecimento , Universidades
11.
PLoS One ; 9(7): e102448, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25047601

RESUMO

Advances in next-generation sequencing offer high-throughput and cost-effective genotyping alternatives, including genotyping-by-sequencing (GBS). Results have shown that this methodology is efficient for genotyping a variety of species, including those with complex genomes. To assess the utility of GBS in cultivated hexaploid oat (Avena sativa L.), seven bi-parental mapping populations and diverse inbred lines from breeding programs around the world were studied. We examined technical factors that influence GBS SNP calls, established a workflow that combines two bioinformatics pipelines for GBS SNP calling, and provided a nomenclature for oat GBS loci. The high-throughput GBS system enabled us to place 45,117 loci on an oat consensus map, thus establishing a positional reference for further genomic studies. Using the diversity lines, we estimated that a minimum density of one marker per 2 to 2.8 cM would be required for genome-wide association studies (GWAS), and GBS markers met this density requirement in most chromosome regions. We also demonstrated the utility of GBS in additional diagnostic applications related to oat breeding. We conclude that GBS is a powerful and useful approach, which will have many additional applications in oat breeding and genomic studies.


Assuntos
Avena/genética , Cruzamento , Mapeamento Cromossômico , Genoma de Planta , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único
12.
PLoS One ; 9(5): e96276, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24820172

RESUMO

Tocochromanols are recognized for nutritional content, plant stress response, and seed longevity. Here we present a systems biological approach to characterize and develop predictive assays for genes affecting tocochromanol variation in barley. Major QTL, detected in three regions of a SNP linkage map, affected multiple tocochromanol forms. Candidate genes were identified through barley/rice orthology and sequenced in genotypes with disparate tocochromanol profiles. Gene-specific markers, designed based on observed polymorphism, mapped to the originating QTL, increasing R2 values at the respective loci. Polymorphism within promoter regions corresponded to motifs known to influence gene expression. Quantitative PCR analysis revealed a trend of increased expression in tissues grown at cold temperatures. These results demonstrate utility of a novel method for rapid gene identification and characterization, and provide a resource for efficient development of barley lines with improved tocochromanol profiles.


Assuntos
Alelos , Hordeum/genética , Biologia de Sistemas/métodos , Mapeamento Cromossômico , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
13.
Theor Appl Genet ; 126(10): 2655-70, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23959525

RESUMO

Mycotoxins caused by Fusarium spp. is a major concern on food and feed safety in oats, although Fusarium head blight (FHB) is often less apparent than in other small grain cereals. Breeding resistant cultivars is an economic and environment-friendly way to reduce toxin content, either by the identification of resistance QTL or phenotypic evaluation. Both are little explored in oats. A recombinant-inbred line population, Hurdal × Z595-7 (HZ595, with 184 lines), was used for QTL mapping and was phenotyped for 3 years. Spawn inoculation was applied and deoxynivalenol (DON) content, FHB severity, days to heading and maturity (DH and DM), and plant height (PH) were measured. The population was genotyped with DArTs, AFLPs, SSRs and selected SNPs, and a linkage map of 1,132 cM was constructed, covering all 21 oat chromosomes. A QTL for DON on chromosome 17A/7C, tentatively designated as Qdon.umb-17A/7C, was detected in all experiments using composite interval mapping, with phenotypic effects of 12.2­26.6 %. In addition, QTL for DON were also found on chromosomes 5C, 9D, 13A, 14D and unknown_3, while a QTL for FHB was found on 11A. Several of the DON/FHB QTL coincided with those for DH, DM and/or PH. A half-sib population of HZ595, Hurdal × Z615-4 (HZ615, with 91 lines), was phenotyped in 2011 for validation of QTL found in HZ595, and Qdon.umb-17A/7C was again localized with a phenotypic effect of 12.4 %. Three SNPs closely linked to Qdon.umb-17A/7C were identified in both populations, and one each for QTL on 5C, 11A and 13A were identified in HZ595. These SNPs, together with those yet to be identified, could be useful in marker-assisted selection to pyramiding resistance QTL.


Assuntos
Avena/genética , Mapeamento Cromossômico , Resistência à Doença/genética , Fusarium/fisiologia , Doenças das Plantas/microbiologia , Locos de Características Quantitativas/genética , Tricotecenos/metabolismo , Análise de Variância , Avena/imunologia , Avena/microbiologia , Segregação de Cromossomos/genética , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Marcadores Genéticos , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Característica Quantitativa Herdável
14.
PLoS One ; 8(3): e58068, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23533580

RESUMO

A physically anchored consensus map is foundational to modern genomics research; however, construction of such a map in oat (Avena sativa L., 2n = 6x = 42) has been hindered by the size and complexity of the genome, the scarcity of robust molecular markers, and the lack of aneuploid stocks. Resources developed in this study include a modified SNP discovery method for complex genomes, a diverse set of oat SNP markers, and a novel chromosome-deficient SNP anchoring strategy. These resources were applied to build the first complete, physically-anchored consensus map of hexaploid oat. Approximately 11,000 high-confidence in silico SNPs were discovered based on nine million inter-varietal sequence reads of genomic and cDNA origin. GoldenGate genotyping of 3,072 SNP assays yielded 1,311 robust markers, of which 985 were mapped in 390 recombinant-inbred lines from six bi-parental mapping populations ranging in size from 49 to 97 progeny. The consensus map included 985 SNPs and 68 previously-published markers, resolving 21 linkage groups with a total map distance of 1,838.8 cM. Consensus linkage groups were assigned to 21 chromosomes using SNP deletion analysis of chromosome-deficient monosomic hybrid stocks. Alignments with sequenced genomes of rice and Brachypodium provide evidence for extensive conservation of genomic regions, and renewed encouragement for orthology-based genomic discovery in this important hexaploid species. These results also provide a framework for high-resolution genetic analysis in oat, and a model for marker development and map construction in other species with complex genomes and limited resources.


Assuntos
Avena/genética , Mapeamento Cromossômico/métodos , Polimorfismo de Nucleotídeo Único/genética , Sintenia/genética , Genoma de Planta/genética
15.
Phytopathology ; 101(11): 1301-10, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21692647

RESUMO

Stagonospora nodorum blotch (SNB), caused by Phaeosphaeria nodorum, is a destructive disease of wheat (Triticum aestivum) found throughout the United States. Host resistance is the only economically feasible option for managing the disease; however, few SNB-resistant wheat cultivars are known to exist. In this study, we report findings from an association mapping (AM) of resistance to P. nodorum in 567 spring wheat landraces of diverse geographic origin. The accessions were evaluated for seedling resistance to P. nodorum in a greenhouse. Phenotypic data and 625 polymorphic diversity array technology (DArT) markers have been used for linkage disequilibrium (LD) and association analyses. The results showed that seven DArT markers on five chromosomes (2D, 3B, 5B, 6A, and 7A) were significantly associated with resistance to P. nodorum. Genetic regions on 2D, 3B, and 5B correspond to previously mapped quantitative trait loci (QTL) conferring resistance to P. nodorum whereas the remaining QTL appeared to be novel. These results demonstrate that the use of AM is an effective method for identifying new genomic regions associated with resistance to P. nodorum in spring wheat landraces. Additionally, the novel resistance found in this study could be useful in wheat breeding aimed at controlling SNB.


Assuntos
Ascomicetos/imunologia , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Locos de Características Quantitativas/genética , Triticum/genética , Triticum/imunologia , Alelos , Ascomicetos/fisiologia , Cruzamento , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Marcadores Genéticos/genética , Genótipo , Desequilíbrio de Ligação , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Polimorfismo Genético/genética , Plântula/genética , Plântula/imunologia , Plântula/microbiologia , Triticum/microbiologia , Estados Unidos , United States Department of Agriculture
16.
BMC Genomics ; 12: 77, 2011 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-21272354

RESUMO

BACKGROUND: Genetic markers are pivotal to modern genomics research; however, discovery and genotyping of molecular markers in oat has been hindered by the size and complexity of the genome, and by a scarcity of sequence data. The purpose of this study was to generate oat expressed sequence tag (EST) information, develop a bioinformatics pipeline for SNP discovery, and establish a method for rapid, cost-effective, and straightforward genotyping of SNP markers in complex polyploid genomes such as oat. RESULTS: Based on cDNA libraries of four cultivated oat genotypes, approximately 127,000 contigs were assembled from approximately one million Roche 454 sequence reads. Contigs were filtered through a novel bioinformatics pipeline to eliminate ambiguous polymorphism caused by subgenome homology, and 96 in silico SNPs were selected from 9,448 candidate loci for validation using high-resolution melting (HRM) analysis. Of these, 52 (54%) were polymorphic between parents of the Ogle1040 × TAM O-301 (OT) mapping population, with 48 segregating as single Mendelian loci, and 44 being placed on the existing OT linkage map. Ogle and TAM amplicons from 12 primers were sequenced for SNP validation, revealing complex polymorphism in seven amplicons but general sequence conservation within SNP loci. Whole-amplicon interrogation with HRM revealed insertions, deletions, and heterozygotes in secondary oat germplasm pools, generating multiple alleles at some primer targets. To validate marker utility, 36 SNP assays were used to evaluate the genetic diversity of 34 diverse oat genotypes. Dendrogram clusters corresponded generally to known genome composition and genetic ancestry. CONCLUSIONS: The high-throughput SNP discovery pipeline presented here is a rapid and effective method for identification of polymorphic SNP alleles in the oat genome. The current-generation HRM system is a simple and highly-informative platform for SNP genotyping. These techniques provide a model for SNP discovery and genotyping in other species with complex and poorly-characterized genomes.


Assuntos
Avena/genética , Genoma de Planta/genética , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA/métodos , Biologia Computacional , Etiquetas de Sequências Expressas , Genótipo
17.
J Hered ; 100(6): 777-83, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19589849

RESUMO

Resistance to Phomopsis seed decay (PSD) in soybean (Glycine max [L.] Merr.) could provide dependable control of this important disease that affects seed quality. Studies have shown that single dominant genes that are allelomorphically different confer low levels of PSD in MO/PSD-0259 and PI 80837. The objectives of this research were to identify simple sequence repeat (SSR) markers linked to genes for PSD resistance in PI 80837 and MO/PSD-0259 and to associate the resistance genes to known linkage groups. Crosses were made between the PSD-susceptible cultivar Agripro 350 and each of the resistant lines MO/PSD-0259 and PI 80837. F(2) populations from each cross were grown and inoculated in the field. Individual plant reactions were characterized by determining the levels of seed infection, and DNA of F(2) plants was extracted for SSR analysis and mapping. F(2) segregation data showed that different single dominant genes condition PSD resistance in MO/PSD-0259 and PI 80837. Resistance in PI 80837 was linked to Sat_177 (4.3 cM) and Sat_342 (15.8 cM) on molecular linkage group (MLG) B2. In MO/PSD-0259, resistance was linked to Sat_317 (5.9 cM) and Sat_120 (12.7 cM) on MLG F. These data support work by Berger and Minor (Berger RD, Minor HC. 1999. An restriction fragment length polymorphism (RFLP) marker associated with resistance to Phomopsis seed decay in soybean PI 417479. Crop Sci 39:800-805.) in which PSD resistance in PI 417479, the resistant parent used to develop MO/PSD-0259, was associated with RFLP marker A708 on MLG F. These SSR markers should be useful in selection for resistant genotypes in breeding programs.


Assuntos
Mapeamento Cromossômico , Glycine max/genética , Imunidade Inata/genética , Doenças das Plantas/microbiologia , Sementes/microbiologia , Cruzamento/métodos , Cruzamentos Genéticos , Marcadores Genéticos/genética , Polimorfismo de Fragmento de Restrição , Glycine max/microbiologia , Especificidade da Espécie
18.
BMC Genomics ; 10: 39, 2009 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-19159465

RESUMO

BACKGROUND: Genomic discovery in oat and its application to oat improvement have been hindered by a lack of genetic markers common to different genetic maps, and by the difficulty of conducting whole-genome analysis using high-throughput markers. This study was intended to develop, characterize, and apply a large set of oat genetic markers based on Diversity Array Technology (DArT). RESULTS: Approximately 19,000 genomic clones were isolated from complexity-reduced genomic representations of pooled DNA samples from 60 oat varieties of global origin. These were screened on three discovery arrays, with more than 2000 polymorphic markers being identified for use in this study, and approximately 2700 potentially polymorphic markers being identified for use in future studies. DNA sequence was obtained for 2573 clones and assembled into a non-redundant set of 1770 contigs and singletons. Of these, 705 showed highly significant (Expectation < 10E-10) BLAST similarity to gene sequences in public databases. Based on marker scores in 80 recombinant inbred lines, 1010 new DArT markers were used to saturate and improve the 'Kanota' x 'Ogle' genetic map. DArT markers provided map coverage approximately equivalent to existing markers. After binning markers from similar clones, as well as those with 99% scoring similarity, a set of 1295 non-redundant markers was used to analyze genetic diversity in 182 accessions of cultivated oat of worldwide origin. Results of this analysis confirmed that major clusters of oat diversity are related to spring vs. winter type, and to the presence of major breeding programs within geographical regions. Secondary clusters revealed groups that were often related to known pedigree structure. CONCLUSION: These markers will provide a solid basis for future efforts in genomic discovery, comparative mapping, and the generation of an oat consensus map. They will also provide new opportunities for directed breeding of superior oat varieties, and guidance in the maintenance of oat genetic diversity.


Assuntos
Avena/genética , Mapeamento Cromossômico/métodos , Marcadores Genéticos , Genoma de Planta , Análise por Conglomerados , DNA de Plantas/genética , Biblioteca Genômica , Genótipo , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo Genético , Análise de Sequência de DNA
19.
Phytopathology ; 96(9): 962-6, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18944051

RESUMO

ABSTRACT Karnal bunt of wheat is caused by the fungus Tilletia indica, which partially converts kernels into sori filled with teliospores. Despite minor overall yield and quality losses, the disease is of considerable international quarantine concern. Plant development stages reported susceptible to infection vary considerably. A study was designed to better define the susceptibility period by inoculating wheat spikes at different growth stages with naturally liberated secondary sporidia under optimal conditions for disease development. Spikes of a resistant and susceptible cultivar were inoculated at eight growth stages from awns emerging to soft dough. Spikes became susceptible only after emerging from the boot and continued to be susceptible up to soft dough stage at which low levels of disease occurred. Disease severity in both cultivars peaked when spikes were inoculated after complete emergence, but before the onset of anthesis. Disease levels tapered off gradually in spikes inoculated after anthesis. The results broaden the known susceptibility period of wheat to T. indica to include stages long after anthesis, and indicate that infection from airborne inoculum is not possible during boot or awns emerging stages, which are commonly referred to as the most susceptible stages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...