Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 192: 113486, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34260968

RESUMO

Diagnostics of SARS-CoV-2 infection using real-time reverse-transcription polymerase chain reaction (RT-PCR) on nasopharyngeal swabs is now well-established, with saliva-based testing being lately more widely implemented for being more adapted for self-testing approaches. In this study, we introduce a different concept based on exhaled breath condensate (EBC), readily collected by a mask-based sampling device, and detection with an electrochemical biosensor with a modular architecture that enables fast and specific detection and quantification of COVID-19. The face mask forms an exhaled breath vapor containment volume to hold the exhaled breath vapor in proximity to the EBC collector to enable a condensate-forming surface, cooled by a thermal mass, to coalesce the exhaled breath into a 200-500 µL fluid sample in 2 min. EBC RT-PCR for SARS-CoV-2 genes (E, ORF1ab) on samples collected from 7 SARS-CoV-2 positive and 7 SARS-CoV-2 negative patients were performed. The presence of SARS-CoV-2 could be detected in 5 out of 7 SARS-CoV-2 positive patients. Furthermore, the EBC samples were screened on an electrochemical aptamer biosensor, which detects SARS-CoV-2 viral particles down to 10 pfu mL-1 in cultured SARS-CoV-2 suspensions. Using a "turn off" assay via ferrocenemethanol redox mediator, results about the infectivity state of the patient are obtained in 10 min.


Assuntos
Técnicas Biossensoriais , COVID-19 , Expiração , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , RNA Viral , SARS-CoV-2
2.
ACS Omega ; 5(35): 22683, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32923829

RESUMO

[This corrects the article DOI: 10.1021/acsomega.9b04341.].

3.
ACS Omega ; 5(20): 11308-11313, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32478218

RESUMO

Interferometric measurements of free solution assays (FSAs) quantify changes in molecular conformation and hydration upon binding. Here, we demonstrate that aptamer probes designed to undergo varying levels of conformational change upon binding produce corresponding variations in FSA signals. A series of hairpin aptamers were synthesized for the small molecule (tenofovir) with identical loop regions that contain the binding pocket, with between 2 and 10 self-associating base pairings in the stem region. Aptamers selected for tenofovir showed a decrease in the FSA signal and binding affinity (increase in K D) with increasing stem length. Thermodynamic calculations of the Gibbs free energy (ΔG) reported a decrease in ΔG with respect to a corresponding increase in the aptamer stem length. Collectively, these observations provide an expanded understanding of FSA and demonstrate the potential for the rational design of label-free aptamer beacons using FSA as readout.

4.
Anal Chem ; 91(16): 10582-10588, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31314489

RESUMO

The opioid epidemic continues in the United States. Many have been impacted by this epidemic, including neonates who exhibit Neonatal Abstinence Syndrome (NAS). Opioid diagnosis and NAS can be negatively impacted by limited testing options outside the hospital, due to poor assay performance, false-negatives, rapid drug clearance rates, and difficulty in obtaining enough specimen for testing. Here we report a small volume urine assay for oxycodone, hydrocodone, fentanyl, noroxycodone, norhydrocodone, and norfentanyl with excellent LODs and LOQs. The free-solution assay (FSA), coupled with high affinity DNA aptamer probes and a compensated interferometric reader (CIR), represents a potential solution for quantifying opioids rapidly, at high sensitivity, and noninvasively on small sample volumes. The mix-and-read test is 5- to 275-fold and 50- to 1250-fold more sensitive than LC-MS/MS and immunoassays, respectively. Using FSA, oxycodone, hydrocodone, fentanyl, and their urinary metabolites were quantified using 10 µL of urine at 28-81 pg/mL, with >95% specificity and excellent accuracy in ∼1 h. The assay sensitivity, small sample size requirement, and speed could enable opioid screening, particularly for neonates, and points to the potential for pharmacokinetic tracking.


Assuntos
Analgésicos Opioides/urina , Aptâmeros de Nucleotídeos/química , Analgésicos Opioides/metabolismo , Fentanila/metabolismo , Fentanila/urina , Humanos , Hidrocodona/análogos & derivados , Hidrocodona/metabolismo , Hidrocodona/urina , Estrutura Molecular , Morfinanos/metabolismo , Morfinanos/urina , Oxicodona/metabolismo , Oxicodona/urina
5.
Biosens Bioelectron ; 131: 119-127, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30826646

RESUMO

Organophosphorus compounds (OPs) continue to represent a significant chemical threat to humans due to exposures from their use as weapons, their potential storage hazards, and from their continued use agriculturally. Existing methods for detection include ELISA and mass spectrometry. The new approach presented here provides an innovative first step toward a portable OP quantification method that surmounts conventional limitations involving sensitivity, selectivity, complexity, and portability. DNA affinity probes, or aptamers, represent an emerging technology that, when combined with a mix-and-read, free-solution assay (FSA) and a compensated interferometer (CI) can provide a novel alternative to existing OP nerve agent (OPNA) quantification methods. Here it is shown that FSA can be used to rapidly screen prospective aptamers in the biological matrix of interest, allowing the identification of a 'best-in-class' probe. It is also shown that combining aptamers with FSA-CI enables quantification of the OPNA metabolites, Sarin (NATO designation "G-series, B", or GB) and Venomous Agent X (VX) acids, rapidly with high selectivity at detection limits of sub-10 pg/mL in 25% serum (by volume in PBS). These results suggest there is potential to directly impact diagnostic specificity and sensitivity of emergency response testing methods by both simplifying sample preparation procedures and making a benchtop reader available for OPNA metabolite quantification.


Assuntos
Técnicas Biossensoriais , Substâncias para a Guerra Química/isolamento & purificação , Agentes Neurotóxicos/isolamento & purificação , Compostos Organotiofosforados/isolamento & purificação , Sarina/isolamento & purificação , Aminas/química , Substâncias para a Guerra Química/química , Cromatografia Líquida , Exposição Ambiental , Ensaio de Imunoadsorção Enzimática , Humanos , Limite de Detecção , Agentes Neurotóxicos/química , Compostos Organofosforados , Compostos Organotiofosforados/química , Sarina/sangue , Espectrometria de Massas em Tandem
6.
RSC Adv ; 9(41): 23752-23763, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35530619

RESUMO

The real-time, colorimetric detection of analytes via aptamer-gold nanoparticle technology has proven to be an important, emerging technique within the medical field. Of global health importance, the ability to detect vector mosquito species, such as the Aedes (Ae.) aegypti mosquito, and transmitted arboviruses, such as Zika virus, is paramount to mosquito control and surveillance efforts. Herein, we describe the detection of Ae. aegypti salivary protein for vector identification and the detection of Zika virus to assess mosquito infection status by aptamer-gold nanoparticle conjugates. Key to optimization of these diagnostics were gold nanoparticle capping agents and aptamer degree of labelling (i.e., the amount of aptamers per gold nanoparticle). In the present study, detection was achieved for as little as 10 ng Ae. aegypti salivary protein and 1.0 × 105 PFU live Zika virus. These aptamer-gold nanoparticle conjugate diagnostics could one day prove to be useful as deployable nano-based biosensors that provide easy-to-read optical read outs through a straightforward red-to-blue colour change either within a diagnostic solution or atop a card/membrane-based biosensor.

7.
J Biomed Opt ; 22(7): 75002, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28732094

RESUMO

A point-of-care (PoC) device with the ability to detect biomarkers at low concentrations in bodily fluids would have an enormous potential for medical diagnostics outside the central laboratory. One method to monitor analytes at low concentrations is by using surface-enhanced Raman spectroscopy (SERS). In this preliminary study toward using SERS for PoC biosensing, the surface of colloidal silver (Ag) nanocubes has been modified to test the feasibility of a competitive binding SERS assay utilizing aptamers against citrulline. Specifically, Ag nanocubes were functionalized with mercaptobenzoic acid, as well as a heterobifunctional polyethylene glycol linker that forms an amide bond with the amino acid citrulline. After the functionalization, the nanocubes were characterized by zeta-potential, transmission electron microscopy images, ultraviolet/visible spectroscopy, and by SERS. The citrulline aptamers were developed and tested using backscattering interferometry. The data show that our surface modification method does work and that the functionalized nanoparticles can be detected using SERS down to a 24.5 picomolar level. Last, we used microscale thermophoresis to show that the aptamers bind to citrulline with at least a 50 times stronger affinity than other amino acids. Download PDF SAVE FOR LATER


Assuntos
Biomarcadores/análise , Técnicas Biossensoriais/instrumentação , Citrulina/química , Nanopartículas Metálicas/química , Sistemas Automatizados de Assistência Junto ao Leito , Prata/química , Análise Espectral Raman , Ligação Competitiva
8.
Anal Chem ; 86(23): 11614-9, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25329684

RESUMO

Surface-enhanced Raman scattering (SERS) optical nanoprobes offer a number of advantages for ultrasensitive analyte detection. These functionalized colloidal nanoparticles are a multifunctional assay component. providing a platform for conjugation to spectral tags, stabilizing polymers, and biorecognition elements such as aptamers or antibodies. We demonstrate the design and characterization of a SERS-active nanoprobe and investigate the nanoparticles' biorecognition capabilities for use in a competitive binding assay. Specifically, the nanoprobe is designed for the quantification of bisphenol A (BPA) levels in the blood after human exposure to the toxin in food and beverage plastic packaging. The nanoprobes demonstrated specific affinity to a BPA aptamer with a dissociation constant Kd of 54 nM, and provided a dose-dependent SERS spectra with a limit of detection of 3 nM. Our conjugation approach shows the versatility of colloidal nanoparticles in assay development, acting as detectable spectral tagging elements and biologically active ligands concurrently.


Assuntos
Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/síntese química , Compostos Benzidrílicos/sangue , Desenho de Fármacos , Nanopartículas/química , Fenóis/sangue , Análise Espectral Raman , Humanos , Estrutura Molecular , Propriedades de Superfície
9.
Analyst ; 139(22): 5879-84, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25229067

RESUMO

Aptamers are segments of single-strand DNA or RNA used in a wide array of applications, including sensors, therapeutics, and cellular process regulators. Aptamers can bind many target species, including proteins, peptides, and small molecules (SM) with high affinity and specificity. They are advantageous because they can be identified in vitro by SELEX, produced rapidly and relatively economically using oligonucleotide synthesis. The use of aptamers as SM probes has experienced a recent rebirth, and because of their unique properties they represent an attractive alternative to antibodies. Current assay methodology for characterizing small molecule-aptamer binding is limited by either mass sensitivity, as in biolayer interferometry (BLI) and surface plasmon resonance (SPR), or the need for using a fluorophore, as in thermophoresis. Here we report that backscattering interferometry (BSI), a label-free and free-solution sensing technique, can be used to effectively characterize SM-aptamer interactions, providing Kd values on microliter sample quantities and at low nanomolar sensitivity. To demonstrate this capability we measured the aptamer affinity for three previously reported small molecules; bisphenol A, tenofovir, and epirubicin showing BSI provided values consistent with those published previously. We then quantified the Kd values for aptamers to ampicillin, tetracycline and norepinephrine. All measurements produced R(2) values >0.95 and an excellent signal to noise ratio at target concentrations that enable true Kd values to be obtained. No immobilization or labeling chemistry was needed, expediting the assay which is also insensitive to the large relative mass difference between the interacting molecules.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnica de Seleção de Aptâmeros , Ressonância de Plasmônio de Superfície
10.
J Mol Diagn ; 14(4): 402-7, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22579629

RESUMO

Virus detection and taxonomic identification of serotypes, strains, or genotypes provide important information relevant for diagnosis, and for the epidemiological characterization and tracking of new strains in an endemic region. In the specific case of dengue virus, rapid serotype identification can also be useful in the treatment of secondary infections that may cause the more severe dengue hemorrhagic fever and dengue shock syndrome. In this work, dengue virus was used as a model to test a new approach of combining broadly sensitive RT-PCR amplification of nearly any virus strain with subsequent serotype- and finer-level identification by mass spectrometry. PCR primers were appended with promoter sequences, such that the resulting PCR products could be transcribed into RNA. RNA fragments generated by guanosine-specific RNase T(1) digestion were analyzed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Viral serotypes were identified by comparing the pattern of observed fragment masses to a mass database. The database was created by computationally fragmenting 2517 dengue strains after each guanosine residue using the same primers. Computationally, all 2517 strains in the mass database were correctly identified at the serotype level from the predicted PCR product. The methodology was successfully demonstrated experimentally by identifying the serotypes of eight test strains using mosquito cell cultures infected with strains of all four serotypes and with full-length cDNA clones.


Assuntos
Vírus da Dengue/genética , Espectrometria de Massas/métodos , Reação em Cadeia da Polimerase/métodos , Vírus/genética , Vírus da Dengue/classificação , Vírus/classificação
11.
BMC Biotechnol ; 10: 85, 2010 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-21134283

RESUMO

BACKGROUND: Manufacturing large quantities of recombinant RNAs by overexpression in a bacterial host is hampered by their instability in intracellular environment. To overcome this problem, an RNA of interest can be fused into a stable bacterial RNA for the resulting chimeric construct to accumulate in the cytoplasm to a sufficiently high level. Being supplemented with cost-effective procedures for isolation of the chimera from cells and recovery of the recombinant RNA from stabilizing scaffold, this strategy might become a viable alternative to the existing methods of chemical or enzymatic RNA synthesis. RESULTS: Sequence encoding a 71-nucleotide recombinant RNA was inserted into a plasmid-borne deletion mutant of the Vibrio proteolyticus 5S rRNA gene in place of helix III - loop C segment of the original 5S rRNA. After transformation into Escherichia coli, the chimeric RNA (3×pen aRNA) was expressed constitutively from E. coli rrnB P1 and P2 promoters. The RNA chimera accumulated to levels that exceeded those of the host's 5S rRNA. A novel method relying on liquid-solid partitioning of cellular constituents was developed for isolation of total RNA from bacterial cells. This protocol avoids toxic chemicals, and is therefore more suitable for large scale RNA purification than traditional methods. A pair of biotinylated 8-17 DNAzymes was used to bring about the quantitative excision of the 71-nt recombinant RNA from the chimera. The recombinant RNA was isolated by sequence-specific capture on beads with immobilized complementary deoxyoligonucleotide, while DNAzymes were recovered by biotin affinity chromatography for reuse. CONCLUSIONS: The feasibility of a fermentation-based approach for manufacturing large quantities of small RNAs in vivo using a "5S rRNA scaffold" strategy is demonstrated. The approach provides a route towards an economical method for the large-scale production of small RNAs including shRNAs, siRNAs and aptamers for use in clinical and biomedical research.


Assuntos
DNA Catalítico/metabolismo , Escherichia coli/genética , RNA Ribossômico 5S/biossíntese , RNA/biossíntese , Escherichia coli/metabolismo , Fermentação , Regiões Promotoras Genéticas
12.
J Mol Recognit ; 22(2): 154-61, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19195013

RESUMO

In previous work, Vibrio proteolyticus 5S rRNA was shown to stabilize 13-50 nucleotide "guest" RNA sequences for expression in Escherichia coli. The expressed chimeric RNAs accumulated to high levels in E. coli without being incorporated into ribosomes and without obvious effects on the host cells. In this work, we inserted sequences encoding known aptamers recognizing a protein and an organic dye into the 5S rRNA carrier and showed that aptamer function is preserved in the chimeras. A surface plasmon resonance competitive binding assay demonstrated that a vascular endothelial growth factor (VEGF) aptamer/5S rRNA chimera produced in vitro by transcriptional runoff could compete with a DNA aptamer for VEGF, implying binding of the growth factor by the VEGF "ribosomal RNA aptamer." Separately, a 5S rRNA chimera displaying an aptamer known to increase the fluorescence of malachite green (MG) also enhanced MG fluorescence. Closely related control rRNA molecules showed neither activity. The MG aptamer/5S rRNA chimera, like the original MG aptamer, also increased the fluorescence of other triphenyl methane (TPM) dyes such as crystal violet, methyl violet, and brilliant green, although less effectively than with MG. These results indicate that the molecular recognition properties of aptamers are not lost when they are expressed in the context of a stable 5S rRNA carrier. Inclusion of the aptamer in a carrier may facilitate production of large quantities of RNA aptamers, and may open an approach to screening aptamer libraries in vivo.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Engenharia Genética , RNA Ribossômico 5S/metabolismo , Corantes de Rosanilina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Técnicas Biossensoriais , Galinhas , Membrana Corioalantoide , Fluorescência , Humanos , Neovascularização Fisiológica , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , RNA Ribossômico 5S/química , RNA Ribossômico 5S/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Fator A de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/genética
13.
Biopolymers ; 91(2): 145-56, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19025993

RESUMO

The binding of a DNA aptamer (5'-CCGTCTTCCAGACAAGAGTGCAGGG-3') to recombinant human vascular endothelial growth factor (VEGF(165)) was characterized using surface plasmon resonance (SPR), fluorescence anisotropy and isothermal titration calorimetry (ITC). Results from both fluorescence anisotropy and ITC indicated that a single aptamer molecule binds to each VEGF homodimer, unlike other VEGF inhibitors that exhibit 2(ligand):1(VEGF homodimer) stoichiometry. In addition, ITC revealed that the association of the aptamer to VEGF at 20 degrees C is enthalpically driven, with an unfavorable entropy contribution. SPR kinetic studies, with careful control of possible mass transfer effects, demonstrated that the aptamer binds to VEGF with an association rate constant k(on) = 4.79 +/- 0.03 x 10(4) M(-1) s(-1) and a dissociation rate constant k(off) = 5.21 +/- 0.02 x 10(-4) s(-1) at 25 degrees C. Key recognition hot-spots were determined by a combination of aptamer sequence substitutions, truncations, and extensions. Most single-nucleotide substitutions, particularly within an mfold-predicted stem, suppress binding, whereas those within a predicted loop have a minimal effect. The 5'-end of the aptamer plays a key role in VEGF recognition, as a single-nucleotide truncation abolished VEGF binding. Conversely, an 11-fold increase in the association rate (and affinity) is observed with a single cytosine nucleotide extension, due to pairing of the 3'-GGG with 5'-CCC in the extended aptamer. Our approach effectively maps the secondary structural elements in the free aptamer, which present the unpaired interface for high affinity VEGF recognition. These data demonstrate that a directed binding analysis can be used in concert with library screening to characterize and improve aptamer/ligand recognition.


Assuntos
DNA/química , Oligodesoxirribonucleotídeos/química , Fator A de Crescimento do Endotélio Vascular/química , Sítios de Ligação , Calorimetria , Entropia , Polarização de Fluorescência , Cinética , Ressonância de Plasmônio de Superfície
14.
J Mol Diagn ; 10(2): 135-41, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18258926

RESUMO

Development of rapid and specific molecular diagnostics for flaviviruses remains an important global health challenge. Herein a platform technology using mass spectrometry that can be used for universal identification and genotyping of these viruses is described. The feasibility of the approach is demonstrated by using it to correctly identify and serotype two strains of dengue virus. Predictive calculations show that the approach can be expected to be equally efficacious for the identification and epidemiological tracking of other flaviviruses including West Nile, Japanese encephalitis, and Yellow Fever. In the case of dengue at least, the method can also distinguish major subgroupings within each serotype. All process steps are amenable to high-throughput, automated implementation. The assay protocol is also compatible with miniature mass spectrometers currently in development, thereby allowing the assay to be brought to remote locations for rapid response to and tracking of outbreaks.


Assuntos
Flavivirus/classificação , Flavivirus/genética , Espectrometria de Massas , Análise por Conglomerados , DNA Viral/análise , DNA Viral/genética , Vírus da Dengue , Flavivirus/isolamento & purificação , Humanos , Filogenia , Sensibilidade e Especificidade , Análise de Sequência de DNA , Sorotipagem
15.
BMC Bioinformatics ; 7: 321, 2006 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-16796754

RESUMO

BACKGROUND: It has recently been demonstrated that organism identifications can be recovered from mass spectra using various methods including base-specific fragmentation of nucleic acids. Because mass spectrometry is extremely rapid and widely available such techniques offer significant advantages in some applications. A key element in favor of mass spectrometric analysis of RNA fragmentation patterns is that a reference database for analysis of the results can be generated from sequence information. In contrast to hybridization approaches, the genetic affinity of any unknown isolate can in principle be determined within the context of all previously sequenced 16S rRNAs without prior knowledge of what the organism is. In contrast to the original RNase T1 cataloging method, when digestion products are analyzed by mass spectrometry, products with the same base composition cannot be distinguished. Hence, it is possible that organisms that are not closely related (having different underlying sequences) might be falsely identified by mass spectral coincidence. We present a convenient spectral coincidence function for expressing the degree of similarity (or distance) between any two mass-spectra. Trees constructed using this function are consistent with those produced by direct comparison of primary sequences, demonstrating that the inherent degeneracy in mass spectrometric analysis of RNA fragments does not preclude correct organism identification. RESULTS: Neighbor-joining trees for important bacterial pathogens were generated using distances based on mass spectrometric observables and the spectral coincidence function. These trees demonstrate that most pathogens will be readily distinguished using mass spectrometric analyses of RNA digestion products. A more detailed, genus-level analysis of pathogens and near relatives was also performed, and it was found that assignments of genetic affinity were consistent with those obtained by direct sequence comparisons. Finally, typical values of the coincidence between organisms were also examined with regard to phylogenetic level and sequence variability. CONCLUSION: Cluster analysis based on comparison of mass spectrometric observables using the spectral coincidence function is an extremely useful tool for determining the genetic affinity of an unknown bacterium. Additionally, fragmentation patterns can determine within hours if an unknown isolate is potentially a known pathogen among thousands of possible organisms, and if so, which one.


Assuntos
Bactérias/genética , Bactérias/isolamento & purificação , Mapeamento Cromossômico/métodos , Genoma Bacteriano/genética , Espectrometria de Massas/métodos , RNA Ribossômico 16S/genética , Análise de Sequência de RNA/métodos , Bases de Dados Genéticas , Genótipo , Armazenamento e Recuperação da Informação/métodos
16.
BMC Bioinformatics ; 7: 117, 2006 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-16524471

RESUMO

BACKGROUND: The public availability of over 180,000 bacterial 16S ribosomal RNA (rRNA) sequences has facilitated microbial identification and classification using hybridization and other molecular approaches. In their usual format, such assays are based on the presence of unique subsequences in the target RNA and require a prior knowledge of what organisms are likely to be in a sample. They are thus limited in generality when analyzing an unknown sample.Herein, we demonstrate the utility of catalogs of masses to characterize the bacterial 16S rRNA(s) in any sample. Sample nucleic acids are digested with a nuclease of known specificity and the products characterized using mass spectrometry. The resulting catalogs of masses can subsequently be compared to the masses known to occur in previously-sequenced 16S rRNAs allowing organism identification. Alternatively, if the organism is not in the existing database, it will still be possible to determine its genetic affinity relative to the known organisms. RESULTS: Ribonuclease T1 and ribonuclease A digestion patterns were calculated for 1,921 complete 16S rRNAs. Oligoribonucleotides generated by RNase T1 of length 9 and longer produce sufficient diversity of masses to be informative. In addition, individual fragments or combinations thereof can be used to recognize the presence of specific organisms in a complex sample. In this regard, 140 strains out of 1,921 organisms (7.3%) could be identified by the presence of a unique RNase T1-generated oligoribonucleotide mass. Combinations of just two and three oligoribonucleotide masses allowed 54% and 72% of the specific strains to be identified, respectively. An initial algorithm for recovering likely organisms present in complex samples is also described. CONCLUSION: The use of catalogs of compositions (masses) of characteristic oligoribonucleotides for microbial identification appears extremely promising. RNase T1 is more useful than ribonuclease A in generating characteristic masses, though RNase A produces oligomers which are more readily distinguished due to the large mass difference between A and G. Identification of multiple species in mixtures is also feasible. Practical applicability of the method depends on high performance mass spectrometric determination, and/or use of methods that increase the one dalton (Da) mass difference between uracil and cytosine.


Assuntos
Algoritmos , Bactérias/genética , Bactérias/isolamento & purificação , Bases de Dados Genéticas , RNA Ribossômico 16S/genética , Alinhamento de Sequência/métodos , Análise de Sequência de RNA/métodos , Bactérias/classificação , Sequência de Bases , Armazenamento e Recuperação da Informação , Dados de Sequência Molecular
17.
Biotechnol Lett ; 27(22): 1739-43, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16314963

RESUMO

A "column-format" preparative electrophoresis device which obviates the need for gel extraction or secondary electro-elution steps is described. Separated biomolecules are continuously detected and eluted directly into a minimal volume of free solution for subsequent use. An optical fiber allows the species of interest to be detected just prior to elution from the gel column, and a small collection volume is created by addition of an ion-exchange membrane near the end of the column.


Assuntos
Cromatografia por Troca Iônica/instrumentação , Eletroforese/instrumentação , Escherichia coli/genética , Tecnologia de Fibra Óptica/instrumentação , Microquímica/instrumentação , RNA Bacteriano/análise , Manejo de Espécimes/instrumentação , Cromatografia por Troca Iônica/métodos , Eletroforese/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Tecnologia de Fibra Óptica/métodos , Microquímica/métodos , Sistemas On-Line , Fibras Ópticas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Manejo de Espécimes/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...