Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(21): 9687-9700, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38743642

RESUMO

The f block is a comparatively understudied group of elements that find applications in many areas. Continued development of technologies involving the lanthanides (Ln) and actinides (An) requires a better fundamental understanding of their chemistry. Specifically, characterizing the electronic structure of the f elements presents a significant challenge due to the spatially core-like but energetically valence-like nature of the f orbitals. This duality led f-block scientists to hypothesize for decades that f-block chemistry is dominated by ionic metal-ligand interactions with little covalency because canonical covalent interactions require both spatial orbital overlap and orbital energy degeneracy. Recent studies on An compounds have suggested that An ions can engage in appreciable orbital mixing between An 5f and ligand orbitals, which was attributed to "energy-degeneracy-driven covalency". This model of bonding has since been a topic of debate because different computational methods have yielded results that support and refute the energy-degeneracy-driven covalency model. In this Viewpoint, literatures concerning the metal- and ligand-edge X-ray absorption near-edge structure (XANES) of five tetravalent f-block systems─MO2 (M = Ln, An), LnF4, MCl62-, and [Ln(NP(pip)3)4]─are compiled and discussed to explore metal-ligand bonding in f-block compounds through experimental metrics. Based on spectral assignments from a variety of theoretical models, covalency is seen to decrease from CeO2 and PrO2 to TbO2 through weaker ligand-to-metal charge-transfer (LMCT) interactions, while these LMCT interactions are not observed in the trivalent Ln sesquixodes until Yb. In comparison, while XANES characterization of AnO2 compounds is scarce, computational modeling of available X-ray absorption spectra suggests that covalency among AnO2 reaches a maximum between Am and Cm. Moreover, a decrease in covalency is observed upon changing ligands while maintaining an isostructural coordination environment from CeO2 to CeF4. These results could allude to the importance of orbital energy degeneracy in f-block bonding, but there are a variety of data gaps and conflicting results from different modeling techniques that need to be addressed before broad conclusions can be drawn.

2.
Phys Chem Chem Phys ; 26(13): 10078-10090, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38482833

RESUMO

Elucidating the relationship between metal-ligand interactions and the associated conformational change of the ligand is critical for understanding the separation of lanthanides via ion binding. Here we examine DTPA, a multidentate ligand that binds lanthanides, in its free and metal bound conformations using ultrafast polarization dependent vibrational spectroscopy. The polarization dependent pump-probe spectra were analyzed to extract the isotropic and anisotropic response of DTPA's carbonyl groups in the 1550-1650 cm-1 spectral region. The isotropic response reports on the population relaxation of the carbonyl stretching modes. We find that the isotropic response is influenced by the identity of the metal ion. The anisotropy decay of the carbonyl stretching modes reveals a faster decay in the lanthanide-DTPA complexes than in the free DTPA ligand. We attribute the anisotropy decay to energy transfer among the different carbonyl sites - where the conformational change results in an increased coupling between the carbonyl sites of metal-bound DTPA complexes. DFT calculations and theoretical simulations of energy transfer suggest that the carbonyl sites are more strongly coupled in the metal-bound conformations compared to the free DTPA. The stronger coupling in the metal bound DTPA conformation leads to efficient energy transfer among the different carbonyl sites. Comparing the rate of anisotropy decay across the series of metal bound DTPA complexes we find that the anisotropy is sensitive to the charge density of the central metal ion, and thus can serve as a molecular scale reporter for lanthanide ion binding.

3.
Inorg Chem ; 62(13): 5270-5281, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36926900

RESUMO

Chelators based on hydroxypyridinones have utility in incorporating radioactive metal ions into diagnostic and therapeutic agents used in nuclear medicine. Over the course of our hydroxypyridinone studies, we have prepared two novel chelators, consisting of a cyclen (1,4,7,10-tetraazacyclododecane) ring bearing two pendant hydroxypyridinone groups, appended via methylene acetamide motifs at either the 1,4-positions (L1) or 1,7-positions (L2) of the cyclen ring. In radiolabeling reactions of L1 or L2 with the γ-emitting radioisotope, [111In]In3+, we have observed radiometal-mediated hydrolysis of a single amide group of either L1 or L2. The reaction of either [111In]In3+ or [natIn]In3+ with either L1 or L2, in aqueous alkaline solutions at 80 °C, initially results in formation of [In(L1)]+ or [In(L2)]+, respectively. Over time, each of these species undergoes In3+-mediated hydrolysis of a single amide group to yield species in which In3+ remains coordinated to the resultant chelator, which consists of a cyclen ring bearing a single hydroxypyridinone group and a single carboxylate group. The reactivity toward hydrolysis is higher for the L1 complex compared to that for the L2 complex. Density functional theory calculations corroborate these experimental findings and importantly indicate that the activation energy required for the hydrolysis of L1 is significantly lower than that required for L2. This is the first reported example of a chelator undergoing radiometal-mediated hydrolysis to form a radiometalated complex. It is possible that metal-mediated amide bond cleavage is a source of instability in other radiotracers, particularly those in which radiometal complexation occurs in aqueous, basic solutions at high temperatures. This study highlights the importance of appropriate characterization of radiolabeled products.

4.
Nucl Med Biol ; 100-101: 36-43, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34153932

RESUMO

INTRODUCTION: The biological consequences of absorbed radiation doses are ill-defined for radiopharmaceuticals, unlike for external beam radiotherapy (EBRT). A reliable assay that assesses the biological consequences of any radionuclide is much needed. Here, we evaluated the cell-free plasmid DNA assay to determine the relative biological effects of radionuclides such as Auger electron-emitting [67Ga]GaCl3 or [111In]InCl3 compared to EBRT. METHODS: Supercoiled pBR322 plasmid DNA (1.25 or 5 ng/µL) was incubated with 0.5 or 1 MBq [67Ga]GaCl3 or [111In]InCl3 for up to 73 h or was exposed to EBRT (137Cs; 5 Gy/min; 0-40 Gy). The induction of relaxed and linear plasmid DNA, representing single and double strand breaks, respectively, was assessed by gel electrophoresis. Chelated forms of 67Ga were also investigated using DOTA and THP. Topological conversion rates for supercoiled-to-relaxed (ksrx) or relaxed-to-linear (krlx) DNA were obtained by fitting a kinetic model. RESULTS: DNA damage increased both with EBRT dose and incubation time for [67Ga]GaCl3 and [111In]InCl3. Damage caused by [67Ga]GaCl3 decreased when chelated. [67Ga]GaCl3 proved more damaging than [111In]InCl3; 1.25 ng/µL DNA incubated with 0.5 MBq [67Ga]GaCl3 for 2 h led to a 70% decrease of intact plasmid DNA as opposed to only a 19% decrease for [111In]InCl3. For both EBRT and radionuclides, conversion rates were slower for 5 ng/µL than 1.25 ng/µL plasmid DNA. DNA damage caused by 1 Gy EBRT was the equivalent to damage caused by 0.5 MBq unchelated [67Ga]GaCl3 and [111In]InCl3 after 2.05 ± 0.36 and 9.3 ± 0.77 h of incubation, respectively. CONCLUSIONS: This work has highlighted the power of the plasmid DNA assay for a rapid determination of the relative biological effects of radionuclides compared to external beam radiotherapy. It is envisaged this approach will enable the systematic assessment of imaging and therapeutic radionuclides, including Auger electron-emitters, to further inform radiopharmaceutical design and application.


Assuntos
Radioisótopos de Gálio
5.
Bioconjug Chem ; 31(3): 483-491, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-31990543

RESUMO

Molecular radiopharmaceuticals based on bioconjugates of chelators with peptides and proteins have had significant clinical impact in the diagnosis and treatment of several types of cancers. In the 1990s, indium-111 and yttrium-90 labeled chelator-peptide/protein conjugates established the clinical utility of these radiopharmaceuticals for receptor-targeted γ-scintigraphy imaging and systemic radiotherapy. Second-generation bioconjugates based on peptides targeting the somatostatin II receptor and the prostate-specific membrane antigen are now widely used for management of neuroendocrine and prostate cancer, respectively. These bioconjugates are typically radiolabeled with gallium-68 for imaging of target receptor expression with positron emission tomography, and the ß--emitter, lutetium-177, for targeted radiotherapy. Innovations in radioisotope technology and biomolecular therapies are likely to drive the future clinical development of radiopharmaceuticals based on radiometals. New chelator-peptide and chelator-protein bioconjugates will underpin nuclear medicine advances in molecular imaging and radiotherapy.


Assuntos
Quelantes/química , Medicina Nuclear/métodos , Peptídeos/química , Proteínas/química , Compostos Radiofarmacêuticos/química , Animais , Diagnóstico por Imagem , Humanos , Compostos Radiofarmacêuticos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...