Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 7(16)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33853771

RESUMO

Soil organic carbon formation remains poorly understood despite its importance for human livelihoods. Uncertainties remain for the relative contributions of aboveground, root, and rhizodeposition inputs to particulate (POC) and mineral-associated (MAOC) organic carbon fractions. Combining a novel framework with isotope tracer studies, we quantified POC and MAOC formation efficiencies (% of C-inputs incorporated into each fraction). We found that rhizodeposition inputs have the highest MAOC formation efficiency (46%) as compared to roots (9%) or aboveground inputs (7%). In addition, rhizodeposition unexpectedly reduced POC formation, likely because it increased decomposition rates of new POC. Conversely, root biomass inputs have the highest POC formation efficiency (19%). Therefore, rhizodeposition and roots appear to play opposite but complementary roles for building MAOC and POC fractions.

2.
Ecol Appl ; 29(4): e01879, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30838713

RESUMO

Plantation forestry, in which trees are grown as a crop, must maintain wood production over repeated harvest cycles (rotations) to meet global wood demands on a limited land area. We analyze 33 yr of Landsat observations across the world's most productive forestry system, Eucalyptus plantations in southeastern Brazil, to assess long-term regional trends in wood production. We apply a simple algorithm to time series of the vegetation index NIRv in thousands of Eucalyptus stands to detect the starts and ends of rotations. We then estimate wood production in each identified stand and rotation, based on a statistical relationship between NIRv trajectories and inventory data from three plantation companies. We also compare Eucalyptus NIRv with that of surrounding native vegetation to assess the relative influence of management and environment on plantation productivity trends. Across more than 3,500 stands with three complete rotations between 1984 and 2016, modeled wood volume decreased significantly between the first and second rotation, but recovered at least partially in the third; mean wood volumes for the three rotations were 262, 228, and 247 m3 /ha. This nonlinear trend reflects intensifying plantation management, as rotation length decreased by an average of 15% (decreasing wood volume per rotation) and NIRv proxies of tree growth rates increased (increasing volume) between the first and third rotation. However, NIRv also increased significantly over time in unmanaged vegetation around the plantations, suggesting that environmental trends affecting all vegetation also contribute to sustaining wood production. Management inputs will likely continue to be important for maintaining wood production in future harvests.


Assuntos
Eucalyptus , Brasil , Agricultura Florestal , Árvores , Madeira
3.
Environ Sci Technol ; 52(9): 5048-5061, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29630347

RESUMO

This paper presents a "policy-informed" life cycle assessment of a cross-border electricity supply chain that links the impact of each unit process to its governing policy framework. An assessment method is developed and applied to the California-Mexico energy exchange as a unique case study. CO2-equivalent emissions impacts, water withdrawals, and air quality impacts associated with California's imports of electricity from Mexican combined-cycle facilities fueled by natural gas from the U.S. Southwest are estimated, and U.S. and Mexican state and federal environmental regulations are examined to assess well-to-wire consistency of energy policies. Results indicate most of the water withdrawn per kWh exported to California occurs in Baja California, most of the air quality impacts accrue in the U.S. Southwest, and emissions of CO2-equivalents are more evenly divided between the two regions. California energy policy design addresses generation-phase CO2 emissions, but not upstream CO2-eq emissions of methane during the fuel cycle. Water and air quality impacts are not regulated consistently due to varying U.S. state policies and a lack of stringent federal regulation of unconventional gas development. Considering local impacts and the regulatory context where they occur provides essential qualitative information for functional-unit-based measures of life cycle impact and is necessary for a more complete environmental impact assessment.


Assuntos
Poluição do Ar , California , Eletricidade , México , Gás Natural
4.
Nat Commun ; 8(1): 387, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855518

RESUMO

The Amazon rainforest is disproportionately important for global carbon storage and biodiversity. The system couples the atmosphere and land, with moist forest that depends on convection to sustain gross primary productivity and growth. Earth system models that estimate future climate and vegetation show little agreement in Amazon simulations. Here we show that biases in internally generated climate, primarily precipitation, explain most of the uncertainty in Earth system model results; models, empirical data and theory converge when precipitation biases are accounted for. Gross primary productivity, above-ground biomass and tree cover align on a hydrological relationship with a breakpoint at ~2000 mm annual precipitation, where the system transitions between water and radiation limitation of evapotranspiration. The breakpoint appears to be fairly stable in the future, suggesting resilience of the Amazon to climate change. Changes in precipitation and land use are therefore more likely to govern biomass and vegetation structure in Amazonia.Earth system model simulations of future climate in the Amazon show little agreement. Here, the authors show that biases in internally generated climate explain most of this uncertainty and that the balance between water-saturated and water-limited evapotranspiration controls the Amazon resilience to climate change.


Assuntos
Biomassa , Conservação dos Recursos Naturais , Floresta Úmida , Atmosfera/química , Carbono , Mudança Climática , Hidrologia , Modelos Biológicos , Modelos Estatísticos , Estações do Ano , América do Sul , Árvores
5.
Ecol Appl ; 26(6): 1633-1644, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27755701

RESUMO

Increasing pressures for food, fiber, and fuel continue to drive global land-use changes. Efforts to optimize ecosystem services under alternative land uses are often hampered by the complex interactions and trade-offs among them. We examined the effects of land-use changes on ecosystem carbon storage and groundwater recharge in grasslands of Argentina and the United States to (1) understand the relationships between both services, (2) predict their responses to vegetation shifts across environmental gradients, and (3) explore how market or policy incentives for ecosystem services could affect land-use changes. A trade-off of ecosystem services was evident in most cases, with woody encroachment increasing carbon storage (+29 Mg C/ha) but decreasing groundwater recharge (-7.3 mm/yr) and conversions to rain-fed cultivation driving opposite changes (-32 Mg C/ha vs. +13 mm/yr). In contrast, crops irrigated with ground water tended to reduce both services compared to the natural grasslands they replaced. Combining economic values of the agricultural products together with the services, we highlight potentials for relatively modest financial incentives for ecosystem services to abate land-use changes and for incentives for carbon to drive land-use decisions over those of water. Our findings also identify key opportunities and caveats for some win-win and lose-lose land-use changes for more integrative and sustainable strategies for land management.


Assuntos
Agricultura , Carbono , Pradaria , Água , Agricultura/economia , Argentina , Produtos Agrícolas/economia , Produtos Agrícolas/fisiologia , Solo , Fatores de Tempo , Estados Unidos
6.
J Environ Manage ; 180: 1-9, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27183477

RESUMO

To reduce dependence on foreign oil reserves, there has been a push in North America to develop alternative domestic energy resources. Relatively undeveloped renewable energy resources include biofuels and wind and solar energy, many of which occur predominantly on rangelands. Rangelands are also key areas for natural gas development from shales and tight sand formations. Accordingly, policies aimed at greater energy independence are likely to affect the delivery of crucial ecosystem services provided by rangelands. Assessing and dealing with the biophysical and socio-economic effects of energy development on rangeland ecosystems require an integrative and systematic approach that is predicated on a broad understanding of diverse issues related to energy development. In this article, we present a road map for developing an integrative assessment of energy development on rangelands in North America. We summarize current knowledge of socio-economic and biophysical aspects of rangeland based energy development, and we identify knowledge gaps and monitoring indicators to fill these knowledge gaps.


Assuntos
Meio Ambiente , Pradaria , Energia Renovável , Canadá , Conservação dos Recursos Naturais , Ecossistema , Recuperação e Remediação Ambiental/métodos , México , Gás Natural , América do Norte , Fatores Socioeconômicos , Energia Solar , Vento
7.
Glob Chang Biol ; 18(10): 3237-3251, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28741815

RESUMO

The replacement of native vegetation by pastures or tree plantations is increasing worldwide. Contradictory effects of these land use transitions on the direction of changes in soil organic carbon (SOC) stocks, quality, and vertical distribution have been reported, which could be explained by the characteristics of the new or prior vegetation, time since vegetation replacement, and environmental conditions. We used a series of paired-field experiments and a literature synthesis to evaluate how these factors affect SOC contents in transitions between tree- and grass-dominated (grazed) ecosystems in South America. Both our field and literature approaches showed that SOC changes (0-20 cm of depth) were independent of the initial native vegetation (forest, grassland, or savanna) but strongly dependent on the characteristics of the new vegetation (tree plantations or pastures), its age, and precipitation. Pasture establishment increased SOC contents across all our precipitation gradient and C gains were greater as pastures aged. In contrast, tree plantations increased SOC stocks in arid sites but decreased them in humid ones. However, SOC losses in humid sites were counterbalanced by the effect of plantation age, as plantations increased their SOC stocks as plantations aged. A multiple regression model including age and precipitation explained more than 50% (p < 0.01) of SOC changes observed after sowing pastures or planting trees. The only clear shift observed in the vertical distribution of SOC occurred when pastures replaced native forests, with SOC gains in the surface soil but losses at greater depths. The changes in SOC stocks occurred mainly in the silt+clay soil size fraction (MAOM), while SOC stocks in labile (POM) fraction remained relatively constant. Our results can be considered in designing strategies to increase SOC storage and soil fertility and highlight the importance of precipitation, soil depth, and age in determining SOC changes across a range of environments and land-use transitions.

8.
Ecol Appl ; 21(7): 2367-79, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22073629

RESUMO

Conversions of natural woodlands to agriculture can alter the hydrologic balance, aquifer recharge, and salinity of soils and groundwater in ways that influence productivity and sustainable land use. Using a land-use change chronosequence in semiarid woodlands of Argentina's Espinal province, we examined the distribution of moisture and solutes and estimated recharge rates on adjacent plots of native woodlands and rain-fed agriculture converted 6-90 years previously. Soil coring and geoelectrical profiling confirmed the presence of spatially extensive salt accumulations in dry woodlands and pervasive salt losses in areas converted to agriculture. A 1.1-km-long electrical resistivity transect traversing woodland, 70-year-old agriculture, and woodland, for instance, revealed a low-resistivity (high-salinity) horizon between approximately 3 m and 13 m depth in the woodlands that was virtually absent in the agricultural site because of leaching. Nine-meter-deep soil profiles indicated a 53% increase in soil water storage after 30 or more years of cultivation. Conservative groundwater-recharge estimates based on chloride tracer methods in agricultural plots ranged from approximately 12 to 45 mm/yr, a substantial increase from the <1 mm/yr recharge in dry woodlands. The onset of deep soil moisture drainage and increased recharge led to >95% loss of sulfate and chloride ions from the shallow vadose zone in most agriculture plots. These losses correspond to over 100 Mg of sulfate and chloride salts potentially released to the region's groundwater aquifers through time with each hectare of deforestation, including a capacity to increase groundwater salinity to >4000 mg/L from these ions alone. Similarities between our findings and those of the dryland salinity problems of deforested woodlands in Australia suggest an important warning about the potential ecohydrological risks brought by the current wave of deforestation in the Espinal and other regions of South America and the world.


Assuntos
Agricultura/história , Água Subterrânea/química , Salinidade , Cloreto de Sódio/química , Ciclo Hidrológico , Argentina , Conservação dos Recursos Naturais , Ecossistema , Monitoramento Ambiental , História do Século XX , História do Século XXI , Fatores de Tempo , Árvores
9.
Appl Environ Microbiol ; 75(19): 6240-8, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19700539

RESUMO

Soil microbes are highly diverse and control most soil biogeochemical reactions. We examined how microbial functional genes and biogeochemical pools responded to the altered chemical inputs accompanying land use change. We examined paired native grasslands and adjacent Eucalyptus plantations (previously grassland) in Uruguay, a region that lacked forests before European settlement. Along with measurements of soil carbon, nitrogen, and bacterial diversity, we analyzed functional genes using the GeoChip 2.0 microarray, which simultaneously quantified several thousand genes involved in soil carbon and nitrogen cycling. Plantations and grassland differed significantly in functional gene profiles, bacterial diversity, and biogeochemical pool sizes. Most grassland profiles were similar, but plantation profiles generally differed from those of grasslands due to differences in functional gene abundance across diverse taxa. Eucalypts decreased ammonification and N fixation functional genes by 11% and 7.9% (P < 0.01), which correlated with decreased microbial biomass N and more NH(4)(+) in plantation soils. Chitinase abundance decreased 7.8% in plantations compared to levels in grassland (P = 0.017), and C polymer-degrading genes decreased by 1.5% overall (P < 0.05), which likely contributed to 54% (P < 0.05) more C in undecomposed extractable soil pools and 27% less microbial C (P < 0.01) in plantation soils. In general, afforestation altered the abundance of many microbial functional genes, corresponding with changes in soil biogeochemistry, in part through altered abundance of overall functional gene types rather than simply through changes in specific taxa. Such changes in microbial functional genes correspond with altered C and N storage and have implications for long-term productivity in these soils.


Assuntos
Bactérias/classificação , Biodiversidade , DNA/genética , DNA/isolamento & purificação , Pool Gênico , Microbiologia do Solo , Solo/análise , Bactérias/genética , Carbono/análise , Quitinases/genética , Análise por Conglomerados , DNA/classificação , Análise em Microsséries , Nitrogênio/análise , Análise de Sequência com Séries de Oligonucleotídeos , Homologia de Sequência , América do Sul , Árvores
10.
Oecologia ; 145(4): 522-32, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16003505

RESUMO

The invasion of African grasses into Neotropical savannas has altered savanna composition, structure and function. The projected increase in atmospheric CO(2) concentration has the potential to further alter the competitive relationship between native and invader grasses. The objective of this study was to quantify the responses of two populations of a widespread native C(4) grass (Trachypogon plumosus) and two African C(4) grass invaders (Hyparrhenia rufa and Melinis minutiflora) to high CO(2) concentration interacting with two primary savanna stressors: drought and herbivory. Elevated CO(2) increased the competitive potential of invader grasses in several ways. Germination and seedling size was promoted in introduced grasses. Under high CO(2), the relative growth rate of young introduced grasses was twice that of native grass (0.58 g g(-1) week(-1) vs 0.25 g g(-1) week(-1)). This initial growth advantage was maintained throughout the course of the study. Well-watered and unstressed African grasses also responded more to high CO(2) than did the native grass (biomass increases of 21-47% compared with decreases of 13-51%). Observed higher water and nitrogen use efficiency of invader grasses may aid their establishment and competitive strength in unfertile sites, specially if the climate becomes drier. In addition, high CO(2) promoted lower leaf N content more in the invader grasses. The more intensive land use, predicted to occur in this region, may interact with high CO(2) to favor the African grasses, as they generally recovered faster after simulated herbivory. The superiority of invader grasses under high CO(2) suggests further increases in their competitive strength and a potential increased rate of displacement of the native savannas in the future by grasslands dominated by introduced African species.


Assuntos
Dióxido de Carbono/metabolismo , Poaceae , Clima Tropical , Água/metabolismo , África , Biodiversidade , Nitrogênio/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Poaceae/crescimento & desenvolvimento , Poaceae/metabolismo , América do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA