Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 31(12): 3457-3477, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37805711

RESUMO

Surfactant protein B (SP-B) deficiency is a rare genetic disease that causes fatal respiratory failure within the first year of life. Currently, the only corrective treatment is lung transplantation. Here, we co-transduced the murine lung with adeno-associated virus 6.2FF (AAV6.2FF) vectors encoding a SaCas9-guide RNA nuclease or donor template to mediate insertion of promoterless reporter genes or the (murine) Sftpb gene in frame with the endogenous surfactant protein C (SP-C) gene, without disrupting SP-C expression. Intranasal administration of 3 × 1011 vg donor template and 1 × 1011 vg nuclease consistently edited approximately 6% of lung epithelial cells. Frequency of gene insertion increased in a dose-dependent manner, reaching 20%-25% editing efficiency with the highest donor template and nuclease doses tested. We next evaluated whether this promoterless gene editing platform could extend survival in the conditional SP-B knockout mouse model. Administration of 1 × 1012 vg SP-B-donor template and 5 × 1011 vg nuclease significantly extended median survival (p = 0.0034) from 5 days in the untreated off doxycycline group to 16 days in the donor AAV and nuclease group, with one gene-edited mouse living 243 days off doxycycline. This AAV6.2FF-based gene editing platform has the potential to correct SP-B deficiency, as well as other disorders of alveolar type II cells.


Assuntos
Doxiciclina , Edição de Genes , Camundongos , Animais , Dependovirus/genética , Vetores Genéticos/genética , RNA Guia de Sistemas CRISPR-Cas , Pulmão/metabolismo , Tensoativos/metabolismo , Sistemas CRISPR-Cas
2.
NPJ Regen Med ; 4: 17, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31452939

RESUMO

Alveolar type-2 (AT2) cells are necessary for the lung's regenerative response to epithelial insults such as influenza. However, current methods to expand these cells rely on mesenchymal co-culture, complicating the possibility of transplantation following acute injury. Here we developed several mesenchyme-free culture conditions that promote growth of murine AT2 organoids. Transplanting dissociated AT2 organoids into influenza-infected mice demonstrated that organoids engraft and either proliferate as AT2 cells or unexpectedly adopt a basal cell-like fate associated with maladaptive regeneration. Alternatively, transplanted primary AT2 cells also robustly engraft, maintaining their AT2 lineage while replenishing the alveolar type-1 (AT1) cell population in the epithelium. Importantly, pulse oximetry revealed significant increase in blood-oxygen saturation in primary AT2 recipients, indicating that transplanted cells also confer increased pulmonary function after influenza. We further demonstrated that both acid installation and bleomycin injury models are also amenable to AT2 transplantation. These studies provide additional methods to study AT2 progenitor potential, while serving as proof-of-principle for adoptive transfer of alveolar progenitors in potential therapeutic applications.

3.
Am J Physiol Lung Cell Mol Physiol ; 316(6): L1141-L1149, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30908939

RESUMO

H1N1 influenza virus infection induces dramatic and permanent alveolar remodeling mediated by p63+ progenitor cell expansion in both mice and some patients with acute respiratory distress syndrome. This persistent lung epithelial dysplasia is accompanied by chronic inflammation, but the driver(s) of this pathology are unknown. This work identified de novo appearance of solitary chemosensory cells (SCCs), as defined by the tuft cell marker doublecortin-like kinase 1, in post-influenza lungs, arising in close proximity with the dysplastic epithelium, whereas uninjured lungs are devoid of SCCs. Interestingly, fate mapping demonstrated that these cells are derived from p63-expressing lineage-negative progenitors, the same cell of origin as the dysplastic epithelium. Direct activation of SCCs with denatonium + succinate increased plasma extravasation specifically in post-influenza virus-injured lungs. Thus we demonstrate the previously unrecognized development and activity of SCCs in the lung following influenza virus infection, implicating SCCs as a central feature of dysplastic remodeling.


Assuntos
Lesão Pulmonar Aguda/patologia , Vírus da Influenza A Subtipo H1N1/metabolismo , Influenza Humana/patologia , Síndrome do Desconforto Respiratório/patologia , Mucosa Respiratória/patologia , Lesão Pulmonar Aguda/virologia , Animais , Líquido da Lavagem Broncoalveolar/citologia , Células Cultivadas , Quinases Semelhantes a Duplacortina , Células Epiteliais/patologia , Feminino , Humanos , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Pulmão/patologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Mucosa Respiratória/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...