Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Microbiol Biol Educ ; : e0005224, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264168

RESUMO

The Partnership for Undergraduate Life Sciences Education (PULSE) is a non-profit educational organization committed to promoting the transformation of undergraduate STEM education by supporting departments in removing barriers to access, equity, and inclusion and in adopting evidence-based teaching and learning practices. The PULSE Ambassadors Campus Workshop program enables faculty and staff members of host departments to 1) develop communication, shared leadership, and inclusion skills for effective team learning; 2) implement facilitative leadership skills (e.g., empathic listening and collaboration); 3) create a shared vision and departmental action plan; and 4) integrate diversity, equity, and inclusion practices in the department and curriculum. From the first workshop in 2014, teams of trained Ambassadors conducted workshops at 58 institutions, including associate, bachelor, master, and doctoral institutions. In their workshop requests, departments cited several motivations: desire to revise and align their curriculum with Vision and Change recommendations, need for assistance with ongoing curricular reform, and wish for external assistance with planning processes and communication. Formative assessments during and immediately following workshops indicated that key outcomes were met. Post-workshop interviews of four departments confirm progress achieved on action items and development of individual department members as agents of change. The PULSE Ambassadors program continues to engage departments to improve undergraduate STEM education and prepare departments for the challenges and uncertainties of the changing higher education landscape.

3.
Plant Cell Physiol ; 48(1): 31-41, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17118946

RESUMO

Heat shock in barley aleurone layers induces heat shock protein synthesis and suppresses secretory protein synthesis by selectively destabilizing their mRNAs. In addition, the endoplasmic reticulum (ER) membranes upon which secretory protein mRNAs are translated become vesiculated during heat shock, leading to the hypothesis that ER dissociation and targeted mRNA destabilization are linked mechanistically. Supporting this, ER can be heat adapted, and heat-adapted ER has higher levels of fatty acid saturation in membrane phospholipids which do not vesiculate upon heat shock. Secretory protein mRNAs are also more stable in heat-adapted cells. To understand better heat shock-induced changes in ER membranes, we examined ER membrane proteins and enzymes involved in phosphatidylcholine biosynthesis and phospholipid turnover in heat-shocked aleurone cells. Heat shock significantly increased the activity of phospholipases A2 and D, and shortly thereafter significant but gradual increases in choline kinase and phosphocholine glyceride transferase activities and a sharp increase in phosphorylcholine citidyl transferase activity were observed. Only minor changes were observed in SDS-PAGE analyses of proteins from sonicated ER membranes fractionated on continuous sucrose gradients. Overall, heat shock reduced total lipid in ER membranes relative to protein, and in intact, ultracentrifuged aleurone cells examined by light and electron microscopy the ER band appeared to increase in density. The changes in phospholipid metabolism coupled with the suppression of secretory protein synthesis indicate that in addition to inducing a classic heat shock response, high temperature also induces a classic unfolded protein response in the ER of this secretory cell.


Assuntos
Retículo Endoplasmático/fisiologia , Proteínas de Choque Térmico/metabolismo , Hordeum/fisiologia , Lipídeos/fisiologia , Proteínas de Plantas/metabolismo , Retículo Endoplasmático/enzimologia , Proteínas de Choque Térmico/genética , Hordeum/enzimologia , Hordeum/genética , Temperatura Alta , Cinética , Organelas/fisiologia , Organelas/ultraestrutura , Fosfolipases/metabolismo , Fosfolipídeos/metabolismo , Proteínas de Plantas/genética , RNA Mensageiro/genética , RNA de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA