Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Development ; 143(8): 1340-50, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26952988

RESUMO

Embryonic development relies on activating and repressing regulatory influences that are faithfully integrated at the core promoter of individual genes. In vertebrates, the basal machinery recognizing the core promoter includes TATA-binding protein (TBP) and two TBP-related factors. In Xenopus embryos, the three TBP family factors are all essential for development and are required for expression of distinct subsets of genes. Here, we report on a non-canonical TBP family-insensitive (TFI) mechanism of transcription initiation that involves mesoderm and organizer gene expression. Using TBP family single- and triple-knockdown experiments, α-amanitin treatment, transcriptome profiling and chromatin immunoprecipitation, we found that TFI gene expression cannot be explained by functional redundancy, is supported by active transcription and shows normal recruitment of the initiating form of RNA polymerase II to the promoter. Strikingly, recruitment of Gcn5 (also known as Kat2a), a co-activator that has been implicated in transcription initiation, to TFI gene promoters is increased upon depletion of TBP family factors. TFI genes are part of a densely connected TBP family-insensitive T-box-Otx2-Gsc interaction network. The results indicate that this network of genes bound by Vegt, Eomes, Otx2 and Gsc utilizes a novel, flexible and non-canonical mechanism of transcription that does not require TBP or TBP-related factors.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Proteína Goosecoid/genética , Fatores de Transcrição Otx/genética , Proteína de Ligação a TATA-Box/metabolismo , Iniciação da Transcrição Genética , Proteínas de Xenopus/genética , Animais , Gastrulação , Técnicas de Silenciamento de Genes , Histona Acetiltransferases/metabolismo , Fatores de Transcrição Otx/metabolismo , Ligação Proteica , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/genética , Xenopus , Proteínas de Xenopus/metabolismo
2.
BMC Genomics ; 14: 762, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24195446

RESUMO

BACKGROUND: Dynamics of polyadenylation vs. deadenylation determine the fate of several developmentally regulated genes. Decay of a subset of maternal mRNAs and new transcription define the maternal-to-zygotic transition, but the full complement of polyadenylated and deadenylated coding and non-coding transcripts has not yet been assessed in Xenopus embryos. RESULTS: To analyze the dynamics and diversity of coding and non-coding transcripts during development, both polyadenylated mRNA and ribosomal RNA-depleted total RNA were harvested across six developmental stages and subjected to high throughput sequencing. The maternally loaded transcriptome is highly diverse and consists of both polyadenylated and deadenylated transcripts. Many maternal genes show peak expression in the oocyte and include genes which are known to be the key regulators of events like oocyte maturation and fertilization. Of all the transcripts that increase in abundance between early blastula and larval stages, about 30% of the embryonic genes are induced by fourfold or more by the late blastula stage and another 35% by late gastrulation. Using a gene model validation and discovery pipeline, we identified novel transcripts and putative long non-coding RNAs (lncRNA). These lncRNA transcripts were stringently selected as spliced transcripts generated from independent promoters, with limited coding potential and a codon bias characteristic of noncoding sequences. Many lncRNAs are conserved and expressed in a developmental stage-specific fashion. CONCLUSIONS: These data reveal dynamics of transcriptome polyadenylation and abundance and provides a high-confidence catalogue of novel and long non-coding RNAs.


Assuntos
Embrião não Mamífero/metabolismo , RNA Mensageiro/genética , Xenopus/genética , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Transcriptoma , Xenopus/embriologia , Xenopus/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
3.
Methods Mol Biol ; 917: 279-92, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22956095

RESUMO

Chromatin immunoprecipitation (ChIP) is a powerful technique to study epigenetic regulation and transcription factor binding events in the nucleus. It is based on immune-affinity capture of epitopes that have been cross-linked to genomic DNA in vivo. A readout of the extent to which the epitope is associated with particular genomic regions can be obtained by quantitative PCR (ChIP-qPCR), microarray hybridization (ChIP-chip), or deep sequencing (ChIP-seq). ChIP can be used for molecular and quantitative analyses of histone modifications, transcription factors, and elongating RNA polymerase II at specific loci. It can also be applied to assess the cellular state of transcriptional activation or repression as a predictor of the cells' capabilities and potential. Another possibility is to employ ChIP to characterize genomes, as histone modifications and binding events occur at specific and highly characteristic genomic elements and locations. This chapter provides a step-by-step protocol of ChIP using early Xenopus embryos and discusses potential pitfalls and other issues relevant for successful probing of protein-genome interactions by ChIP-qPCR and ChIP-seq.


Assuntos
Embrião não Mamífero/citologia , Xenopus/genética , Animais , Anticorpos/química , Anticorpos/imunologia , Especificidade de Anticorpos , Sequência de Bases , Cromatina/genética , Cromatina/isolamento & purificação , Imunoprecipitação da Cromatina , DNA/genética , DNA/isolamento & purificação , Primers do DNA/genética , Proteínas Fetais/genética , Loci Gênicos , Sequenciamento de Nucleotídeos em Larga Escala , Histonas/metabolismo , Metilação , Análise de Sequência com Séries de Oligonucleotídeos , Processamento de Proteína Pós-Traducional , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Sonicação , Proteínas com Domínio T/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/imunologia , Proteínas de Xenopus/metabolismo
4.
Genome Res ; 21(3): 410-21, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21284373

RESUMO

Transcription initiation involves the recruitment of basal transcription factors to the core promoter. A variety of core promoter elements exists; however for most of these motifs, the distribution across species is unknown. Here we report on the comparison of human and amphibian promoter sequences. We have used oligo-capping in combination with deep sequencing to determine transcription start sites in Xenopus tropicalis. To systematically predict regulatory elements, we have developed a de novo motif finding pipeline using an ensemble of computational tools. A comprehensive comparison of human and amphibian promoter sequences revealed both similarities and differences in core promoter architecture. Some of the differences stem from a highly divergent nucleotide composition of Xenopus and human promoters. Whereas the distribution of some core promoter motifs is conserved independently of species-specific nucleotide bias, the frequency of another class of motifs correlates with the single nucleotide frequencies. This class includes the well-known TATA box and SP1 motifs, which are more abundant in Xenopus and human promoters, respectively. While these motifs are enriched above the local nucleotide background in both organisms, their frequency varies in step with this background. These differences are likely adaptive as these motifs can recruit TFIID to either CpG island or sharply initiating promoters. Our results highlight both the conserved and diverged aspects of vertebrate transcription, most notably showing co-opted motif usage to recruit the transcriptional machinery to promoters with diverging nucleotide composition. This shows how sweeping changes in nucleotide composition are compatible with highly conserved mechanisms of transcription initiation.


Assuntos
Sequência Conservada , Transcrição Gênica , Adaptação Biológica , Animais , Sequência de Bases , Ilhas de CpG , Feminino , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Homologia de Sequência do Ácido Nucleico , TATA Box , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismo , Sítio de Iniciação de Transcrição , Xenopus
5.
Dev Cell ; 17(3): 425-34, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19758566

RESUMO

Epigenetic mechanisms set apart the active and inactive regions in the genome of multicellular organisms to produce distinct cell fates during embryogenesis. Here, we report on the epigenetic and transcriptome genome-wide maps of gastrula-stage Xenopus tropicalis embryos using massive parallel sequencing of cDNA (RNA-seq) and DNA obtained by chromatin immunoprecipitation (ChIP-seq) of histone H3 K4 and K27 trimethylation and RNA Polymerase II (RNAPII). These maps identify promoters and transcribed regions. Strikingly, genomic regions featuring opposing histone modifications are mostly transcribed, reflecting spatially regulated expression rather than bivalency as determined by expression profile analyses, sequential ChIP, and ChIP-seq on dissected embryos. Spatial differences in H3K27me3 deposition are predictive of localized gene expression. Moreover, the appearance of H3K4me3 coincides with zygotic gene activation, whereas H3K27me3 is predominantly deposited upon subsequent spatial restriction or repression of transcriptional regulators. These results reveal a hierarchy in the spatial control of zygotic gene activation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Animais , Epigênese Genética , Gástrula/metabolismo , Genoma , Humanos , Camundongos , Modelos Biológicos , Modelos Genéticos , Nucleossomos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fatores de Tempo , Xenopus/embriologia , Xenopus laevis/embriologia
6.
EMBO J ; 26(17): 3900-9, 2007 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-17703192

RESUMO

In addition to TATA-binding protein (TBP), a key factor for transcription initiation, the metazoan-specific TBP-like factor TLF/TRF2 and the vertebrate-specific factor TBP2/TRF3 are known to be required for transcription of specific subsets of genes. We have combined an antisense-knockdown approach with transcriptome profiling to determine the significance and biological role of TBP-independent transcription in early gastrula-stage Xenopus laevis embryos. Here, we report that, although each of the TBP family members is essential for embryonic development, relatively few genes depend on TBP in the embryo. Most of the transcripts that depend on TBP in the embryo are also expressed maternally and in adult stages, and show no functional specialization. In contrast, TLF is linked to preferential expression in embryos and shows functional specialization in catabolism. A requirement for TBP2 is linked to vertebrate-specific embryonic genes and ventral-specific expression. Therefore TBP paralogs are essential for the gene-regulatory repertoire that is directly linked to early embryogenesis.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/metabolismo , Proteína de Ligação a TATA-Box/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animais , Gástrula/metabolismo , Xenopus laevis/genética
7.
Proc Natl Acad Sci U S A ; 101(37): 13525-30, 2004 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-15345743

RESUMO

The general transcription factor TATA-binding protein (TBP) is a key initiation factor involved in transcription by all three eukaryotic RNA polymerases. In addition, the related metazoan-specific TBP-like factor (TLF/TRF2) is essential for transcription of a distinct subset of genes. Here we characterize the vertebrate-specific TBP-like factor TBP2, using in vitro assays, in vivo antisense knockdown, and mRNA rescue experiments, as well as chromatin immunoprecipitation. We show that TBP2 is recruited to promoters in Xenopus oocytes in the absence of detectable TBP recruitment. Furthermore, TBP2 is essential for gastrulation and for the transcription of a subset of genes during Xenopus embryogenesis. In embryos, TBP2 protein is much less abundant than TBP, and moderate overexpression of TBP2 partially rescues an antisense knockdown of TBP levels and restores transcription of many TBP-dependent genes. TBP2 may be a TBP replacement factor in oocytes, whereas in embryos both TBP and TBP2 are required even though they exhibit partial redundancy and gene selectivity.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteína de Ligação a TATA-Box/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/embriologia , Xenopus/metabolismo , Animais , Núcleo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Embrião não Mamífero/metabolismo , Oócitos/citologia , Oócitos/metabolismo , Testes de Precipitina , Regiões Promotoras Genéticas/genética , Proteína de Ligação a TATA-Box/análogos & derivados , Proteína de Ligação a TATA-Box/genética , Xenopus/genética , Proteínas de Xenopus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA