Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 117(8): 2479-2488, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32374435

RESUMO

The glycosylation pathways of several eukaryotic protein expression hosts are being engineered to enable the production of therapeutic glycoproteins with humanized application-customized glycan structures. In several expression hosts, this has been quite successful, but one caveat is that the new N-glycan structures inadvertently might be substrates for one or more of the multitude of endogenous glycosyltransferases in such heterologous background. This then results in the formation of novel, undesired glycan structures, which often remain insufficiently characterized. When expressing mouse interleukin-22 in a Pichia pastoris (syn. Komagataella phaffii) GlycoSwitchM5 strain, which had been optimized to produce Man5 GlcNAc2 N-glycans, glycan profiling revealed two major species: Man5 GlcNAc2 and an unexpected, partially α-mannosidase-resistant structure. A detailed structural analysis using exoglycosidase sequencing, mass spectrometry, linkage analysis, and nuclear magnetic resonance revealed that this novel glycan was Man5 GlcNAc2 modified with a Glcα-1,2-Manß-1,2-Manß-1,3-Glcα-1,3-R tetrasaccharide. Expression of a Golgi-targeted GlcNAc transferase-I strongly inhibited the formation of this novel modification, resulting in more homogeneous modification with the targeted GlcNAcMan5 GlcNAc2 structure. Our findings reinforce accumulating evidence that robustly customizing the N-glycosylation pathway in P. pastoris to produce particular human-type structures is still an incompletely solved synthetic biology challenge, which will require further innovation to enable safe glycoprotein pharmaceutical production.


Assuntos
Glicoproteínas , Polissacarídeos , Engenharia de Proteínas/métodos , Saccharomycetales , Biologia Sintética/métodos , Animais , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicosilação , Humanos , Camundongos , Polissacarídeos/química , Polissacarídeos/genética , Polissacarídeos/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo
2.
Hum Mol Genet ; 23(11): 2880-7, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24403049

RESUMO

Leukocyte adhesion deficiency type II is a hereditary disorder of neutrophil migration caused by mutations in the guanosine diphosphate-fucose transporter gene (SLC35C1). In these patients, inability to generate key fucosylated molecules including sialyl Lewis X leads to leukocytosis and recurrent infections, in addition to short stature and developmental delay. We report two brothers with short stature and developmental delay who are compound heterozygotes for novel mutations in SLC35C1 resulting in partial in vivo defects in fucosylation. Specifically, plasma glycoproteins including immunoglobulin G demonstrated marked changes in glycoform distribution. While neutrophil rolling on endothelial selectins was partially impeded, residual adhesion proved sufficient to avoid leukocytosis or recurrent infection. These findings demonstrate a surprising degree of immune redundancy in the face of substantial alterations in adhesion molecule expression, and show that short stature and developmental delay may be the sole presenting signs in this disorder.


Assuntos
Defeitos Congênitos da Glicosilação/fisiopatologia , Deficiências do Desenvolvimento/fisiopatologia , Leucocitose/fisiopatologia , Proteínas de Transporte de Monossacarídeos/genética , Neutrófilos/citologia , Tamanho Corporal , Adesão Celular , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/metabolismo , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/metabolismo , Humanos , Leucocitose/genética , Leucocitose/metabolismo , Masculino , Proteínas de Transporte de Monossacarídeos/metabolismo , Neutrófilos/metabolismo , Adulto Jovem
3.
FEBS Lett ; 585(20): 3148-58, 2011 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-21827751

RESUMO

Despite great strides in our knowledge of the genetic and epigenetic changes underlying malignancy, we have limited information on the molecular basis of metastasis. Over 90% of cancer deaths are caused by spread of tumor cells from a primary site to distant organs and tissues, highlighting the pressing need to define the molecular effectors of cancer metastasis. Mounting evidence suggests that circulating tumor cells (CTCs) home to specific tissues by hijacking the normal leukocyte trafficking mechanisms. Cancer cells characteristically express CD44, and there is increasing evidence that hematopoietic cell E-/L-selectin ligand (HCELL), a sialofucosylated glycoform of CD44, serves as the major selectin ligand on cancer cells, allowing interaction of tumor cells with endothelium, leukocytes, and platelets. Here, we review the structural biology of CD44 and of HCELL, and present current data on the function of these molecules in mediating organ-specific homing/metastasis of CTCs.


Assuntos
Comunicação Celular , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Receptores de Hialuronatos , Proteínas de Neoplasias , Células Neoplásicas Circulantes/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Plaquetas/metabolismo , Plaquetas/patologia , Endotélio/metabolismo , Endotélio/patologia , Humanos , Receptores de Hialuronatos/química , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Leucócitos/metabolismo , Leucócitos/patologia , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Células Neoplásicas Circulantes/patologia , Células-Tronco Neoplásicas/patologia , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
4.
Microb Cell Fact ; 9: 93, 2010 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-21092289

RESUMO

BACKGROUND: Yeast expression systems with altered N-glycosylation are now available to produce glycoproteins with homogenous, defined N-glycans. However, data on the behaviour of these strains in high cell density cultivation are scarce. RESULTS: Here, we report on cultivations under controlled specific growth rate of a GlycoSwitch-Man5 Pichia pastoris strain producing Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) at high levels (hundreds of milligrams per liter). We demonstrate that homogenous Man5GlcNAc2 N-glycosylation of the secreted proteins is achieved at all specific growth rates tested. CONCLUSIONS: Together, these data illustrate that the GlycoSwitch-Man5 P. pastoris is a robust production strain for homogenously N-glycosylated proteins.


Assuntos
Fermentação , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Pichia/crescimento & desenvolvimento , Clonagem Molecular , Glicosilação , Fator Estimulador de Colônias de Granulócitos e Macrófagos/química , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Pichia/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
Microb Cell Fact ; 9: 49, 2010 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-20591165

RESUMO

BACKGROUND: The unfolded protein response (UPR) in eukaryotes upregulates factors that restore ER homeostasis upon protein folding stress and in yeast is activated by a non-conventional splicing of the HAC1 mRNA. The spliced HAC1 mRNA encodes an active transcription factor that binds to UPR-responsive elements in the promoter of UPR target genes. Overexpression of the HAC1 gene of S. cerevisiae can reportedly lead to increased production of heterologous proteins. To further such studies in the biotechnology favored yeast Pichia pastoris, we cloned and characterized the P. pastoris HAC1 gene and the splice event. RESULTS: We identified the HAC1 homologue of P. pastoris and its splice sites. Surprisingly, we could not find evidence for the non-spliced HAC1 mRNA when P. pastoris was cultivated in a standard growth medium without any endoplasmic reticulum stress inducers, indicating that the UPR is constitutively active to some extent in this organism. After identification of the sequence encoding active Hac1p we evaluated the effect of its overexpression in Pichia. The KAR2 UPR-responsive gene was strongly upregulated. Electron microscopy revealed an expansion of the intracellular membranes in Hac1p-overexpressing strains. We then evaluated the effect of inducible and constitutive UPR induction on the production of secreted, surface displayed and membrane proteins. Wherever Hac1p overexpression affected heterologous protein expression levels, this effect was always stronger when Hac1p expression was inducible rather than constitutive. Depending on the heterologous protein, co-expression of Hac1p increased, decreased or had no effect on expression level. Moreover, alpha-mating factor prepro signal processing of a G-protein coupled receptor was more efficient with Hac1p overexpression; resulting in a significantly improved homogeneity. CONCLUSIONS: Overexpression of P. pastoris Hac1p can be used to increase the production of heterologous proteins but needs to be evaluated on a case by case basis. Inducible Hac1p expression is more effective than constitutive expression. Correct processing and thus homogeneity of proteins that are difficult to express, such as GPCRs, can be increased by co-expression with Hac1p.


Assuntos
Proteínas Fúngicas/genética , Proteínas de Membrana/metabolismo , Pichia/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas Fúngicas/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Proteínas de Membrana/genética , Camundongos , Dados de Sequência Molecular , Pichia/metabolismo , Splicing de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/metabolismo
6.
Nat Protoc ; 4(1): 58-70, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19131957

RESUMO

Here we provide a protocol for engineering the N-glycosylation pathway of the yeast Pichia pastoris. The general strategy consists of the disruption of an endogenous glycosyltransferase gene (OCH1) and the stepwise introduction of heterologous glycosylation enzymes. Each engineering step results in the introduction of one glycosidase or glycosyltransferase activity into the Pichia endoplasmic reticulum or Golgi complex and consists of a number of stages: transformation with the appropriate GlycoSwitch vector, small-scale cultivation of a number of transformants, sugar analysis and heterologous protein expression analysis. If desired, the resulting clone can be further engineered by repeating the procedure with the next GlycoSwitch vector. Each engineering step takes approximately 3 weeks. The conversion of any wild-type Pichia strain into a strain that modifies its glycoproteins with Gal(2)GlcNAc(2)Man(3)GlcNAc(2)N-glycans requires the introduction of five GlycoSwitch vectors. Three examples of the full engineering procedure are provided to illustrate the results that can be expected.


Assuntos
Glucosiltransferases/genética , Pichia/genética , Engenharia de Proteínas/métodos , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/metabolismo , Vetores Genéticos/genética , Glucosiltransferases/metabolismo , Glicosilação , Complexo de Golgi/enzimologia , Complexo de Golgi/metabolismo , Pichia/metabolismo
7.
Biotechnol Lett ; 30(12): 2173-81, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18679585

RESUMO

Expression of proteins on the surface of yeasts has a wide range of applications in biotechnology, such as directed evolution of proteins for increased affinity and thermal stability, screening of antibody libraries, epitope mapping, and use as whole-cell biocatalysts. However, hyperglycosylation can interfere with overall protein accessibility on the surface. Therefore, the less elaborate hyperglycosylation in wild type Pichia pastoris and the availability of glycoengineered strains make this yeast an excellent alternative for surface display of glycoproteins. Here, we report the implementation of the well-established a-agglutinin-based yeast surface display technology in P. pastoris. Four heterologous proteins were expressed on the surface of a wild type and a glycoengineered strain. Surface display levels were monitored by Western blot, immunofluorescence microscopy, and FACS analysis. The availability of glycoengineered strains makes P. pastoris an excellent alternative for surface display of glycoproteins and paves the way for new applications.


Assuntos
Engenharia Genética , Glicoproteínas de Membrana/metabolismo , Pichia/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Western Blotting , Clonagem Molecular , Citometria de Fluxo , Regulação Fúngica da Expressão Gênica , Vetores Genéticos , Glicosilação , Humanos , Glicoproteínas de Membrana/genética , Microscopia de Fluorescência , Pichia/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Glycobiology ; 18(2): 137-44, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18086821

RESUMO

The establishment of a robust technology platform for the expression cloning of carbohydrate-binding proteins remains a key challenge in glycomics. Here we explore the utility of using yeast surface display (YSD) technology in the interaction-based lectin cloning from complete cDNA libraries. This should pave the way for more detailed studies of protein-carbohydrate interactions. To evaluate the performance of this system, lectins representing three different subfamilies (galectins, siglecs, and C-type lectins) were successfully displayed on the surface of Saccharomyces cerevisiae and Pichia pastoris as a-agglutinin and/or alpha-agglutinin fusions. The predicted carbohydrate-binding activity could be detected for three out of five lectins tested (galectin-1, galectin-3, and siaoadhesin). For galectin-4 and E-selectin, no specific carbohydrate-binding activity could be detected. We also demonstrate that proteins with carbohydrate affinity can be specifically isolated from complex metazoan cDNA libraries through multiple rounds of FACS sorting, employing multivalent, fluorescent-labeled polyacrylamide-based glycoconjugates.


Assuntos
Clonagem Molecular/métodos , Biblioteca Gênica , Lectinas/genética , DNA Complementar/metabolismo , Citometria de Fluxo , Galectina 1/genética , Galectina 1/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Humanos , Região Variável de Imunoglobulina , Lectinas/metabolismo , Modelos Biológicos , Pichia/genética , Saccharomyces cerevisiae/genética , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...