Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2400473, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38412424

RESUMO

Carbon-based quantum dots (QDs) enable flexible manipulation of electronic behavior at the nanoscale, but controlling their magnetic properties requires atomically precise structural control. While magnetism is observed in organic molecules and graphene nanoribbons (GNRs), GNR precursors enabling bottom-up fabrication of QDs with various spin ground states have not yet been reported. Here the development of a new GNR precursor that results in magnetic QD structures embedded in semiconducting GNRs is reported. Inserting one such molecule into the GNR backbone and graphitizing it results in a QD region hosting one unpaired electron. QDs composed of two precursor molecules exhibit nonmagnetic, antiferromagnetic, or antiferromagnetic ground states, depending on the structural details that determine the coupling behavior of the spins originating from each molecule. The synthesis of these QDs and the emergence of localized states are demonstrated through high-resolution atomic force microscopy (HR-AFM), scanning tunneling microscopy (STM) imaging, and spectroscopy, and the relationship between QD atomic structure and magnetic properties is uncovered. GNR QDs provide a useful platform for controlling the spin-degree of freedom in carbon-based nanostructures.

2.
ACS Nano ; 17(24): 24901-24909, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38051766

RESUMO

The low-energy electronic structure of nanographenes can be tuned through zero-energy π-electron states, typically referred to as zero-modes. Customizable electronic and magnetic structures have been engineered by coupling zero-modes through exchange and hybridization interactions. Manipulation of the energy of such states, however, has not yet received significant attention. We find that attaching a five-membered ring to a zigzag edge hosting a zero-mode perturbs the energy of that mode and turns it into an off-zero mode: a localized state with a distinctive electron-accepting character. Whereas the end states of typical 7-atom-wide armchair graphene nanoribbons (7-AGNRs) lose their electrons when physisorbed on Au(111) (due to its high work function), converting them into off-zero modes by introducing cyclopentadienyl five-membered rings allows them to retain their single-electron occupation. This approach enables the magnetic properties of 7-AGNR end states to be explored using scanning tunneling microscopy (STM) on a gold substrate. We find a gradual decrease of the magnetic coupling between off-zero mode end states as a function of GNR length, and evolution from a more closed-shell to a more open-shell ground state.

3.
J Am Chem Soc ; 145(35): 19338-19346, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37611208

RESUMO

Substitutional heteroatom doping of bottom-up engineered 1D graphene nanoribbons (GNRs) is a versatile tool for realizing low-dimensional functional materials for nanoelectronics and sensing. Previous efforts have largely relied on replacing C-H groups lining the edges of GNRs with trigonal planar N atoms. This type of atomically precise doping, however, only results in a modest realignment of the valence band (VB) and conduction band (CB) energies. Here, we report the design, bottom-up synthesis, and spectroscopic characterization of nitrogen core-doped 5-atom-wide armchair GNRs (N2-5-AGNRs) that yield much greater energy-level shifting of the GNR electronic structure. Here, the substitution of C atoms with N atoms along the backbone of the GNR introduces a single surplus π-electron per dopant that populates the electronic states associated with previously unoccupied bands. First-principles DFT-LDA calculations confirm that a sizable shift in Fermi energy (∼1.0 eV) is accompanied by a broad reconfiguration of the band structure, including the opening of a new band gap and the transition from a direct to an indirect semiconducting band gap. Scanning tunneling spectroscopy (STS) lift-off charge transport experiments corroborate the theoretical results and reveal the relationship among substitutional heteroatom doping, Fermi-level shifting, electronic band structure, and topological engineering for this new N-doped GNR.

4.
J Am Chem Soc ; 144(35): 16012-16019, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36017775

RESUMO

While enormous progress has been achieved in synthesizing atomically precise graphene nanoribbons (GNRs), the preparation of GNRs with a fully predetermined length and monomer sequence remains an unmet challenge. Here, we report a fabrication method that provides access to structurally diverse and monodisperse "designer" GNRs through utilization of an iterative synthesis strategy, in which a single monomer is incorporated into an oligomer chain during each chemical cycle. Surface-assisted cyclodehydrogenation is subsequently employed to generate the final nanoribbons, and bond-resolved scanning tunneling microscopy is utilized to characterize them.


Assuntos
Grafite , Nanotubos de Carbono , Grafite/química , Nanotubos de Carbono/química
5.
J Am Chem Soc ; 144(30): 13696-13703, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35867847

RESUMO

The design of a spin imbalance within the crystallographic unit cell of bottom-up engineered 1D graphene nanoribbons (GNRs) gives rise to nonzero magnetic moments within each cell. Here, we demonstrate the bottom-up assembly and spectroscopic characterization of a one-dimensional Kondo spin chain formed by a chevron-type GNR (cGNR) physisorbed on Au(111). Substitutional nitrogen core doping introduces a pair of low-lying occupied states per monomer within the semiconducting gap of cGNRs. Charging resulting from the interaction with the gold substrate quenches one electronic state for each monomer, leaving behind a 1D chain of radical cations commensurate with the unit cell of the ribbon. Scanning tunneling microscopy (STM) and spectroscopy (STS) reveal the signature of a Kondo resonance emerging from the interaction of S = 1/2 spin centers in each monomer core with itinerant electrons in the Au substrate. STM tip lift-off experiments locally reduce the effective screening of the unpaired radical cation being lifted, revealing a robust exchange coupling between neighboring spin centers. First-principles DFT-LSDA calculations support the presence of magnetic moments in the core of this GNR when it is placed on Au.

6.
Sci Adv ; 7(52): eabl5892, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34936436

RESUMO

The incorporation of nonhexagonal rings into graphene nanoribbons (GNRs) is an effective strategy for engineering localized electronic states, bandgaps, and magnetic properties. Here, we demonstrate the successful synthesis of nanoribbons having four-membered ring (cyclobutadienoid) linkages by using an on-surface synthesis approach involving direct contact transfer of coronene-type precursors followed by thermally assisted [2 + 2] cycloaddition. The resulting coronene-cyclobutadienoid nanoribbons feature a narrow 600-meV bandgap and novel electronic frontier states that can be interpreted as linear chains of effective px and py pseudo-atomic orbitals. We show that these states give rise to exceptional physical properties, such as a rigid indirect energy gap. This provides a previously unexplored strategy for constructing narrow gap GNRs via modification of precursor molecules whose function is to modulate the coupling between adjacent four-membered ring states.

7.
ACS Nano ; 15(12): 20633-20642, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34842409

RESUMO

Bottom-up graphene nanoribbons (GNRs) have recently been shown to host nontrivial topological phases. Here, we report the fabrication and characterization of deterministic GNR quantum dots whose orbital character is defined by zero-mode states arising from nontrivial topological interfaces. Topological control was achieved through the synthesis and on-surface assembly of three distinct molecular precursors designed to exhibit structurally derived topological electronic states. Using a combination of low-temperature scanning tunneling microscopy and spectroscopy, we have characterized two GNR topological quantum dot arrangements synthesized under ultrahigh vacuum conditions. Our results are supported by density-functional theory and tight-binding calculations, revealing that the magnitude and sign of orbital hopping between topological zero-mode states can be tuned based on the bonding geometry of the interconnecting region. These results demonstrate the utility of topological zero modes as components for designer quantum dots and advanced electronic devices.

8.
J Am Chem Soc ; 143(11): 4174-4178, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33710887

RESUMO

The scope of graphene nanoribbon (GNR) structures accessible through bottom-up approaches is defined by the intrinsic limitations of either all-on-surface or all-solution-based synthesis. Here, we report a hybrid bottom-up synthesis of GNRs based on a Matrix-Assisted Direct (MAD) transfer technique that successfully leverages technical advantages inherent to both solution-based and on-surface synthesis while sidestepping their drawbacks. Critical structural parameters tightly controlled in solution-based polymerization reactions can seamlessly be translated into the structure of the corresponding GNRs. The transformative potential of the synergetic bottom-up approaches facilitated by the MAD transfer techniques is highlighted by the synthesis of chevron-type GNRs (cGNRs) featuring narrow length distributions and a nitrogen core-doped armchair GNR (N4-7-ANGR) that remains inaccessible using either a solution-based or an on-surface bottom-up approach alone.

9.
ACS Nano ; 15(2): 2635-2642, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33492120

RESUMO

The rational bottom-up synthesis of graphene nanoribbons (GNRs) provides atomically precise control of widths and edges that give rise to a wide range of electronic properties promising for electronic devices such as field-effect transistors (FETs). Since the bottom-up synthesis commonly takes place on catalytic metallic surfaces, the integration of GNRs into such devices requires their transfer onto insulating substrates, which remains one of the bottlenecks in the development of GNR-based electronics. Herein, we report on a method for the transfer-free placement of GNRs on insulators. This involves growing GNRs on a gold film deposited onto an insulating layer followed by gentle wet etching of the gold, which leaves the nanoribbons to settle in place on the underlying insulating substrate. Scanning tunneling microscopy and Raman spectroscopy confirm that atomically precise GNRs of high density uniformly grow on the gold films deposited onto SiO2/Si substrates and remain structurally intact after the etching process. We have also demonstrated transfer-free fabrication of ultrashort channel GNR FETs using this process. A very important aspect of the present work is that the method can scale up well to 12 in. wafers, which is extremely difficult for previous techniques. Our work here thus represents an important step toward large-scale integration of GNRs into electronic devices.

10.
J Am Chem Soc ; 142(31): 13507-13514, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32640790

RESUMO

The incorporation of nanoscale pores into a sheet of graphene allows it to switch from an impermeable semimetal to a semiconducting nanosieve. Nanoporous graphenes are desirable for applications ranging from high-performance semiconductor device channels to atomically thin molecular sieve membranes, and their performance is highly dependent on the periodicity and reproducibility of pores at the atomic level. Achieving precise nanopore topologies in graphene using top-down lithographic approaches has proven to be challenging due to poor structural control at the atomic level. Alternatively, atomically precise nanometer-sized pores can be fabricated via lateral fusion of bottom-up synthesized graphene nanoribbons. This technique, however, typically requires an additional high temperature cross-coupling step following the nanoribbon formation that inherently yields poor lateral conjugation, resulting in 2D materials that are weakly connected both mechanically and electronically. Here, we demonstrate a novel bottom-up approach for forming fully conjugated nanoporous graphene through a single, mild annealing step following the initial polymer formation. We find emergent interface-localized electronic states within the bulk band gap of the graphene nanoribbon that hybridize to yield a dispersive two-dimensional low-energy band of states. We show that this low-energy band can be rationalized in terms of edge states of the constituent single-strand nanoribbons. The localization of these 2D states around pores makes this material particularly attractive for applications requiring electronically sensitive molecular sieves.

11.
J Phys Chem C Nanomater Interfaces ; 123(14): 8892-8901, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-31001369

RESUMO

On-surface synthesis has emerged in the last decade as a method to create graphene nanoribbons (GNRs) with atomic precision. The underlying premise of this bottom-up strategy is that precursor molecules undergo a well-defined sequence of inter- and intramolecular reactions, leading to the formation of a single product. As such, the structure of the GNR is encoded in the precursors. However, recent examples have shown that not only the molecule, but also the coinage metal surface on which the reaction takes place, plays a decisive role in dictating the nanoribbon structure. In this work, we use scanning probe microscopy and X-ray photoelectron spectroscopy to investigate the behavior of 10,10'-dichloro-9,9'-bianthryl (DCBA) on Ag(111). Our study shows that Ag(111) can induce the formation of both seven-atom wide armchair GNRs (7-acGNRs) and 3,1-chiral GNRs (3,1-cGNRs), demonstrating that a single molecule on a single surface can react to different nanoribbon products. We additionally show that coadsorbed dibromoperylene can promote surface-assisted dehydrogenative coupling in DCBA, leading to the exclusive formation of 3,1-cGNRs.

12.
ACS Nano ; 12(7): 7048-7056, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-29939719

RESUMO

With the advent of atomically precise synthesis and consequent precise tailoring of their electronic properties, graphene nanoribbons (GNRs) have emerged as promising building blocks for nanoelectronics. Before being applied as such, it is imperative that their charge transport properties are investigated. Recently, formation of a molecular junction through the controlled attachment of nanoribbons to the probe of a scanning tunneling microscope (STM) and subsequent lifting allowed for the first conductance measurements. Drawbacks are the perturbation of the intrinsic electronic properties through interaction with the metal surface, as well as the risk of current-induced defect formation which largely restricts the measurements to low bias voltages. Here, we show that resonant transport-essential for device applications-can be measured by lifting electronically decoupled GNRs from an ultrathin layer of NaCl. By varying the applied voltage and tip-sample distance, we can probe resonant transport through frontier orbitals and its dependence on junction length. This technique is used for two distinct types of GNRs: the 7 atom wide armchair GNR and the 3,1-chiral GNR. The features in the conductance maps can be understood and modeled in terms of the intrinsic electronic properties of the ribbons as well as capacitive coupling to tip and substrate. We demonstrate that we can simultaneously measure the current decay with increasing junction length and bias voltage by using a double modulation spectroscopy technique. The strategy described in this work is widely applicable and will lead to a better understanding of electronic transport through molecular junctions in general.

13.
Nat Phys ; 13(7): 672-676, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28706560

RESUMO

Geometry, whether on the atomic or nanoscale, is a key factor for the electronic band structure of materials. Some specific geometries give rise to novel and potentially useful electronic bands. For example, a honeycomb lattice leads to Dirac-type bands where the charge carriers behave as massless particles [1]. Theoretical predictions are triggering the exploration of novel 2D geometries [2-10], such as graphynes, Kagomé and the Lieb lattice. The latter is the 2D analogue of the 3D lattice exhibited by perovskites [2]; it is a square-depleted lattice, which is characterised by a band structure featuring Dirac cones intersected by a flat band. Whereas photonic and cold-atom Lieb lattices have been demonstrated [11-17], an electronic equivalent in 2D is difficult to realize in an existing material. Here, we report an electronic Lieb lattice formed by the surface state electrons of Cu(111) confined by an array of CO molecules positioned with a scanning tunneling microscope (STM). Using scanning tunneling microscopy, spectroscopy and wave-function mapping, we confirm the predicted characteristic electronic structure of the Lieb lattice. The experimental findings are corroborated by muffin-tin and tight-binding calculations. At higher energies, second-order electronic patterns are observed, which are equivalent to a super-Lieb lattice.

14.
Angew Chem Int Ed Engl ; 55(42): 13052-13055, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27632976

RESUMO

The Ullmann coupling has been used extensively as a synthetic tool for the formation of C-C bonds on surfaces. Thus far, most syntheses made use of aryl bromides or aryl iodides. We investigated the applicability of an aryl chloride in the bottom-up assembly of graphene nanoribbons. Specifically, the reactions of 10,10'-dichloro-9,9'-bianthryl (DCBA) on Au(111) were studied. Using atomic resolution non-contact AFM, the structure of various coupling products and intermediates were resolved, allowing us to reveal the important role of the geometry of the intermediate aryl radicals in the formation mechanism. For the aryl chloride, cyclodehydrogenation occurs before dehalogenation and polymerization. Due to their geometry, the planar bisanthene radicals display a different coupling behavior compared to the staggered bianthryl radicals formed when aryl bromides are used. This results in oligo- and polybisanthenes with predominantly fluoranthene-type connections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...