Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Toxicology ; 499: 153662, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37923288

RESUMO

Many in vitro and in vivo studies have shown that exposure to carbon nanotubes (CNTs) is associated with inflammation, oxidative stress and genotoxicity, although there is a paucity of studies on these effects in the pleural cavity. In the present study, we investigated adverse outcomes of pleural exposure to multi-walled CNTs (MWCNT-7, NM-401 and NM-403) and single-walled CNTs (NM-411). Female C57BL/6 mice were exposed to 0.2 or 5 µg of CNTs by intra-pleural injection and sacrificed one-year post-exposure. Exposure to long and straight types of MWCNTs (i.e. MWCNT-7 and NM-401) was associated with decreased number of macrophages and increased number of neutrophils and eosinophils in pleural lavage fluid. Increased protein content in the pleural lavage fluid was also observed in mice exposed to MWCNT-7 and NM-401. The concentration of mesothelin was increased in mice exposed to MWCNT-7 and NM-411. Levels of DNA strand breaks and DNA oxidation damage, measured by the comet assay, were unaltered in cells from pleural scrape. Extra-pleural effects were seen in CNT exposed mice, including enlarged and pigmented mediastinal lymph nodes (all four types of CNTs), pericardial plaques (MWCNT-7 and NM-401), macroscopic abnormalities on the liver (MWCNT-7) and ovaries/uterus (NM-411). In conclusion, the results demonstrate that intra-pleural exposure to long and straight MWCNTs is associated with adverse outcomes. Certain observations such as increased content of mesothelin in pleural lavage fluid and ovarian/uterine abnormalities in mice exposed to NM-411 suggests that exposure to SWCNTs may also be associated with some adverse outcomes.


Assuntos
Nanotubos de Carbono , Animais , Feminino , Camundongos , DNA/metabolismo , Dano ao DNA , Pulmão/patologia , Mesotelina , Camundongos Endogâmicos C57BL , Nanotubos de Carbono/efeitos adversos , Nanotubos de Carbono/química , Nanotubos de Carbono/toxicidade
2.
Indoor Air ; 32(12): e13177, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36567521

RESUMO

We spend most of our time indoors; however, little is known about the effects of exposure to aerosol particles indoors. We aimed to determine differences in relative toxicity and physicochemical properties of PM2.5 collected simultaneously indoors (PM2.5 INDOOR ) and outdoors (PM2.5 OUTDOOR ) in 15 occupied homes in southern Sweden. Collected particles were extracted from filters, pooled (indoor and outdoor separately), and characterized for chemical composition and endotoxins before being tested for toxicity in mice via intratracheal instillation. Various endpoints including lung inflammation, genotoxicity, and acute-phase response in lung and liver were assessed 1, 3, and 28 days post-exposure. Chemical composition of particles used in toxicological assessment was compared to particles analyzed without extraction. Time-resolved particle mass and number concentrations were monitored. PM2.5 INDOOR showed higher relative concentrations (µg mg-1 ) of metals, PAHs, and endotoxins compared to PM2.5 OUTDOOR . These differences may be linked to PM2.5 INDOOR causing significantly higher lung inflammation and lung acute-phase response 1 day post-exposure compared to PM2.5 OUTDOOR and vehicle controls, respectively. None of the tested materials caused genotoxicity. PM2.5 INDOOR displayed higher relative toxicity than PM2.5 OUTDOOR under the studied conditions, that is, wintertime with reduced air exchange rates, high influence of indoor sources, and relatively low outdoor concentrations of PM. Reducing PM2.5 INDOOR exposure requires reduction of both infiltration from outdoors and indoor-generated particles.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Pneumonia , Animais , Camundongos , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/efeitos adversos , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Tamanho da Partícula , Reação de Fase Aguda , Suécia , Material Particulado/análise , Pneumonia/etiologia
3.
Nanotoxicology ; 16(6-8): 812-827, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36480659

RESUMO

The inclusion of nanoparticles can increase the quality of certain products. One application is the inclusion of Zinc oxide (ZnO) nanoparticles in a glass coating matrix to produce a UV-absorbing coating for glass sheets. Yet, the question is whether the inclusion of ZnO in the matrix induces toxicity at low exposure levels. To test this, mice were given single intratracheal instillation of 1) ZnO powder (ZnO), 2) ZnO in a glass matrix coating in its liquid phase (ZnO-Matrix), and 3) the matrix with no ZnO (Matrix). Doses of ZnO were 0.23, 0.67, and 2 µg ZnO/mouse. ZnO Matrix doses had equal amounts of ZnO, while Matrix was adjusted to have an equal volume of matrix as ZnO Matrix. Post-exposure periods were 1, 3, or 28 d. Endpoints were pulmonary inflammation as bronchoalveolar lavage (BAL) fluid cellularity, genotoxicity in lung and liver, measured by comet assay, histopathology of lung and liver, and global gene expression in lung using microarrays. Neutrophil numbers were increased to a similar extent with ZnO and ZnO-Matrix at 1 and 3 d. Only weak genotoxicity without dose-response effects was observed in the lung. Lung histology showed an earlier onset of inflammation in material-exposed groups as compared to controls. Microarray analysis showed a stronger response in terms of the number of differentially regulated genes in ZnO-Matrix exposed mice as compared to Matrix only. Activated canonical pathways included inflammatory and cardiovascular ones. In conclusion, the pulmonary toxicity of ZnO was not changed by formulation in a liquid matrix for glass coating.


Assuntos
Pneumopatias , Nanopartículas , Pneumonia , Óxido de Zinco , Camundongos , Animais , Óxido de Zinco/toxicidade , Óxido de Zinco/metabolismo , Pulmão , Pneumopatias/metabolismo , Pneumonia/patologia , Nanopartículas/toxicidade , Líquido da Lavagem Broncoalveolar
4.
Artigo em Inglês | MEDLINE | ID: mdl-36416018

RESUMO

Animal experiments are highly relevant models for the assessment of toxicological effects of engineered nanomaterials (ENMs), due to lack of biomonitoring and epidemiological studies. However, the expanding number of ENMs with different physico-chemical properties strains this approach, as there are ethical concerns and economical challenges with the use of animals in toxicology. There is an urgent need for cell culture models that predict the level of toxicological responses in vivo, consequently reducing or replacing the use of animals in nanotoxicology. However, there is still a limited number of studies on in vitro-in vivo correlation of toxicological responses following ENMs exposure. In this review, we collected studies that have compared in vitro and in vivo toxic effects caused by ENMs. We discuss the influence of cell culture models and exposure systems on the predictability of in vitro models to equivalent toxic effects in animal lungs after pulmonary exposure to ENMs. In addition, we discuss approaches to qualitatively or quantitatively compare the effects in vitro and in vivo. The magnitude of toxicological responses in cells that are exposed in submerged condition is not systematically different from the response in cells exposed in air-liquid interface systems, and there appears to be similar ENMs hazard ranking between the two exposure systems. Overall, we show that simple in vitro models with cells exposed to ENMs in submerged condition can be used to predict toxic effects in vivo, and identify future strategies to improve the associations between in vitro and in vivo ENMs-induced pulmonary toxicity. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.


Assuntos
Nanoestruturas , Animais , Nanoestruturas/toxicidade , Nanoestruturas/química , Técnicas de Cultura de Células
5.
Toxicol In Vitro ; 85: 105473, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36108805

RESUMO

To reduce, replace, and refine in vivo testing, there is increasing emphasis on the development of more physiologically relevant in vitro test systems to improve the reliability of non-animal-based methods for hazard assessment. When developing new approach methodologies, it is important to standardize the protocols and demonstrate the methods can be reproduced by multiple laboratories. The aim of this study was to assess the transferability and reproducibility of two advanced in vitro liver models, the Primary Human multicellular microtissue liver model (PHH) and the 3D HepG2 Spheroid Model, for nanomaterial (NM) and chemical hazard assessment purposes. The PHH model inter-laboratory trial showed strong consistency across the testing sites. All laboratories evaluated cytokine release and cytotoxicity following exposure to titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles. No significant difference was observed in cytotoxicity or IL-8 release for the test materials. The data were reproducible with all three laboratories with control readouts within a similar range. The PHH model ZnO induced the greatest cytotoxicity response at 50.0 µg/mL and a dose-dependent increase in IL-8 release. For the 3D HepG2 spheroid model, all test sites were able to construct the model and demonstrated good concordance in IL-8 cytokine release and genotoxicity data. This trial demonstrates the successful transfer of new approach methodologies across multiple laboratories, with good reproducibility for several hazard endpoints.


Assuntos
Óxido de Zinco , Humanos , Óxido de Zinco/toxicidade , Reprodutibilidade dos Testes , Interleucina-8 , Fígado , Linhagem Celular , Esferoides Celulares
6.
Nanotoxicology ; 16(4): 526-546, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35993455

RESUMO

Carbon black nanoparticles (CBNPs) have a large surface area/volume ratio and are known to generate oxidative stress and inflammation that may result in genotoxicity and cancer. Here, we evaluated the primary and inflammatory response-driven (i.e. secondary) genotoxicity of two CBNPs, Flammruss101 (FL101) and PrintexXE2B (XE2B) that differ in size and specific surface area (SSA), and cause different amounts of reactive oxygen species. Three doses (low, medium and high) of FL101 and XE2B were assessed in vitro in the lung epithelial (A549) and activated THP-1 (THP-1a) monocytic cells exposed in submerged conditions for 6 and 24 h, and in C57BL/6 mice at day 1, 28 and 90 following intratracheal instillation. In vitro, we assessed pro-inflammatory response as IL-8 and IL-1ß gene expression, and in vivo, inflammation was determined as inflammatory cell infiltrates in bronchial lavage (BAL) fluid and as histological changes in lung tissue. DNA damage was quantified in vitro and in vivo as DNA strand breaks levels by the alkaline comet assay. Inflammatory responses in vitro and in vivo correlated with dosed CBNPs SSA. Both materials induced DNA damage in THP-1a (correlated with dosed mass), and only XE2B in A549 cells. Non-statistically significant increase in DNA damage in vivo was observed in BAL cells. In conclusion, this study shows dosed SSA predicted inflammation both in vivo and in vitro, whereas dosed mass predicted genotoxicity in vitro in THP-1a cells. The observed lack of correlation between CBNP surface area and genotoxicity provides little evidence of inflammation-driven genotoxicity in vivo and in vitro.


Assuntos
Nanopartículas , Fuligem , Animais , Dano ao DNA , Inflamação/induzido quimicamente , Inflamação/metabolismo , Interleucina-8/metabolismo , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Fuligem/toxicidade
7.
Mutat Res Rev Mutat Res ; 790: 108441, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36007825

RESUMO

Carbon black exposure causes oxidative stress, inflammation and genotoxicity. The objective of this systematic review was to assess the contributions of primary (i.e. direct formation of DNA damage) and secondary genotoxicity (i.e., DNA lesions produced indirectly by inflammation) to the overall level of DNA damage by carbon black. The database is dominated by studies that have measured DNA damage by the comet assay. Cell culture studies indicate a genotoxic action of carbon black, which might be mediated by oxidative stress. Many in vivo studies originate from one laboratory that has investigated the genotoxic effects of Printex 90 in mice by intra-tracheal instillation. Meta-analysis and pooled analysis of these results demonstrate that Printex 90 exposure is associated with a slightly increased level of DNA strand breaks in bronchoalveolar lavage cells and lung tissue. Other types of genotoxic damage have not been investigated as thoroughly as DNA strand breaks, although there is evidence to suggest that carbon black exposure might increase the mutation frequency and cytogenetic endpoints. Stratification of studies according to concurrent inflammation and DNA damage does not indicate that carbon black exposure gives rise to secondary genotoxicity. Even substantial pulmonary inflammation is at best only associated with a weak genotoxic response in lung tissue. In conclusion, the review indicates that nanosized carbon black is a weak genotoxic agent and this effect is more likely to originate from a primary genotoxic mechanism of action, mediated by e.g., oxidative stress, than inflammation-driven (secondary) genotoxicity.


Assuntos
Nanopartículas , Fuligem , Camundongos , Animais , Fuligem/toxicidade , Ensaio Cometa , Dano ao DNA , Nanopartículas/toxicidade , Inflamação , Mamíferos
8.
Part Fibre Toxicol ; 19(1): 50, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35854357

RESUMO

BACKGROUND: The EU-project GRACIOUS developed an Integrated Approach to Testing and Assessment (IATA) to support grouping high aspect ratio nanomaterials (HARNs) presenting a similar inhalation hazard. Application of grouping reduces the need to assess toxicity on a case-by-case basis and supports read-across of hazard data from substances that have the data required for risk assessment (source) to those that lack such data (target). The HARN IATA, based on the fibre paradigm for pathogenic fibres, facilitates structured data gathering to propose groups of similar HARN and to support read-across by prompting users to address relevant questions regarding HARN morphology, biopersistence and inflammatory potential. The IATA is structured in tiers, allowing grouping decisions to be made using simple in vitro or in silico methods in Tier1 progressing to in vivo approaches at the highest Tier3. Here we present a case-study testing the applicability of GRACIOUS IATA to form an evidence-based group of multiwalled carbon nanotubes (MWCNT) posing a similar predicted fibre-hazard, to support read-across and reduce the burden of toxicity testing. RESULTS: The case-study uses data on 15 different MWCNT, obtained from the published literature. By following the IATA, a group of 2 MWCNT was identified (NRCWE006 and NM-401) based on a high degree of similarity. A pairwise similarity assessment was subsequently conducted between the grouped MWCNT to evaluate the potential to conduct read-across and fill data gaps required for regulatory hazard assessment. The similarity assessment, based on expert judgement of Tier 1 assay results, predicts both MWCNT are likely to cause a similar acute in vivo hazard. This result supports the possibility for read-across of sub-chronic and chronic hazard endpoint data for lung fibrosis and carcinogenicity between the 2 grouped MWCNT. The implications of accepting the similarity assessment based on expert judgement of the MWCNT group are considered to stimulate future discussion on the level of similarity between group members considered sufficient to allow regulatory acceptance of a read-across argument. CONCLUSION: This proof-of-concept case-study demonstrates how a grouping hypothesis and IATA may be used to support a nuanced and evidence-based grouping of 'similar' MWCNT and the subsequent interpolation of data between group members to streamline the hazard assessment process.


Assuntos
Nanotubos de Carbono , Fibrose Pulmonar , Administração por Inalação , Humanos , Pulmão , Nanotubos de Carbono/toxicidade , Testes de Toxicidade/métodos
9.
Front Toxicol ; 4: 887135, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875696

RESUMO

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are formed as a result of natural cellular processes, intracellular signaling, or as adverse responses associated with diseases or exposure to oxidizing chemical and non-chemical stressors. The action of ROS and RNS, collectively referred to as reactive oxygen and nitrogen species (RONS), has recently become highly relevant in a number of adverse outcome pathways (AOPs) that capture, organize, evaluate and portray causal relationships pertinent to adversity or disease progression. RONS can potentially act as a key event (KE) in the cascade of responses leading to an adverse outcome (AO) within such AOPs, but are also known to modulate responses of events along the AOP continuum without being an AOP event itself. A substantial discussion has therefore been undertaken in a series of workshops named "Mystery or ROS" to elucidate the role of RONS in disease and adverse effects associated with exposure to stressors such as nanoparticles, chemical, and ionizing and non-ionizing radiation. This review introduces the background for RONS production, reflects on the direct and indirect effects of RONS, addresses the diversity of terminology used in different fields of research, and provides guidance for developing a harmonized approach for defining a common event terminology within the AOP developer community.

10.
NanoImpact ; 25: 100385, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35559891

RESUMO

Expectations for safer and sustainable chemicals and products are growing to comply with the United Nations and European strategies for sustainability. The application of Safe(r) by Design (SbD) in nanotechnology implies an iterative process where functionality, human health and safety, environmental and economic impact and cost are assessed and balanced as early as possible in the innovation process and updated at each step. The EU H2020 NanoReg2 project was the first European project to implement SbD in six companies handling and/or manufacturing nanomaterials (NMs) and nano-enabled products (NEP). The results from this experience have been used to develop these guidelines on the practical application of SbD. The SbD approach foresees the identification, estimation, and reduction of human and environmental risks as early as possible in the development of a NM or NEP, and it is based on three pillars: (i) safer NMs and NEP; (ii) safer use and end of life and (iii) safer industrial production. The presented guidelines include a set of information and tools that will help deciding at each step of the innovation process whether to continue, apply SbD measures or carry out further tests to reduce uncertainty. It does not intend to be a prescriptive protocol where all suggested steps have to be followed to achieve a SbD NM/NEP or process. Rather, the guidelines are designed to identify risks at an early state and information to be considered to identify those risks. Each company adapts the approach to its specific needs and circumstances as company decisions influence the way forward.


Assuntos
Nanoestruturas , Nanotecnologia , Humanos , Indústrias , Nanoestruturas/efeitos adversos , Incerteza
11.
Toxicol Mech Methods ; 32(6): 439-452, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35086424

RESUMO

Improved strategies are required for testing nanomaterials (NMs) to make hazard and risk assessment more efficient and sustainable. Including reduced reliance on animal models, without decreasing the level of human health protection. Acellular detection of reactive oxygen species (ROS) may be useful as a screening assay to prioritize NMs of high concern. To improve reliability and reproducibility, and minimize uncertainty, a standard operating procedure (SOP) has been developed for the detection of ROS using the 2',7'-dichlorodihydrofluorescein diacetate (DCFH2-DA) assay. The SOP has undergone an inter- and intra-laboratory comparison, to evaluate robustness, reliability, and reproducibility, using representative materials (ZnO, CuO, Mn2O3, and BaSO4 NMs), and a number of calibration tools to normalize data. The SOP includes an NM positive control (nanoparticle carbon black (NPCB)), a chemical positive control (SIN-1), and a standard curve of fluorescein fluorescence. The interlaboratory comparison demonstrated that arbitrary fluorescence units show high levels of partner variability; however, data normalization improved variability. With statistical analysis, it was shown that the SIN-1 positive control provided an extremely high level of reliability and reproducibility as a positive control and as a normalization tool. The NPCB positive control can be used with a relatively high level of reproducibility, and in terms of the representative materials, the reproducibility CuO induced-effects was better than for Mn2O3. Using this DCFH2-DA acellular assay SOP resulted in a robust intra-laboratory reproduction of ROS measurements from all NMs tested, while effective reproduction across different laboratories was also demonstrated; the effectiveness of attaining reproducibility within the interlaboratory assessment was particle-type-specific.


Assuntos
Nanopartículas , Nanoestruturas , Animais , Bioensaio , Nanoestruturas/toxicidade , Espécies Reativas de Oxigênio , Reprodutibilidade dos Testes
12.
Mutat Res Rev Mutat Res ; 788: 108393, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34893158

RESUMO

Carbon nanotubes (CNTs) were the first nanomaterials to be evaluated by the International Agency for Research on Cancer (IARC). The categorization as possibly carcinogenic agent to humans was only applicable to multi-walled carbon nanotubes called MWCNT-7. Other types of CNTs were not classifiable because of missing data and it was not possible to pinpoint unique CNT characteristics that cause cancer. Importantly, the European Commission's Joint Research Centre (JRC) has established a repository of industrially manufactured nanomaterials that encompasses at least four well-characterized MWCNTs called NM-400 to NM-403 (original JRC code). This review summarizes the genotoxic effects of these JRC materials and MWCNT-7. The review consists of 36 publications with results on cell culture experiments (22 publications), animal models (9 publications) or both (5 publications). As compared to the publications in the IARC monograph on CNTs, the current database represents a significant increase as there is only an overlap of 8 publications. However, the results come mainly from cell cultures and/or measurements of DNA strand breaks by the comet assay and the micronucleus assay (82 out of 97 outcomes). A meta-analysis of cell culture studies on DNA strand breaks showed a genotoxic response by MWCNT-7, less consistent effect by NM-400 and NM-402, and least consistent effect by NM-401 and NM-403. Results from other in vitro tests indicate strongest evidence of genotoxicity for MWCNT-7. There are too few observations from animal models and humans to make general conclusions about genotoxicity.


Assuntos
Mutagênicos/toxicidade , Nanotubos de Carbono/toxicidade , Animais , Dano ao DNA , Humanos
13.
Artigo em Inglês | MEDLINE | ID: mdl-34798932

RESUMO

Nanoclays and graphene oxide nanomaterials represent a class of materials sharing similar shapes constituted of high aspect ratio platelets. The increased production of these materials for various industrial applications increases the risk of occupational exposure, consequently with elevated risk of adverse reactions and development of pulmonary diseases, including lung cancer. In this study, pro-inflammatory responses and genotoxicity were assessed in alveolar epithelial cells (A549) and activated THP-1 macrophages (THP-1a) after exposure to three nanoclays; a pristine (Bentonite) and two surface modified (benzalkonium chloride-coated Nanofil9, and dialkyldimethyl-ammonium-coated NanofilSE3000); graphene oxide (GO) and reduced graphene oxide (r-GO) nanomaterials. The pro-inflammatory response in terms of IL-8 expression was strongest in cells exposed to Bentonite, whereas surface modification resulted in decreased toxicity in both cell lines when exposed to Nanofil9 and NanofilSE3000. GO and r-GO induced a pro-inflammatory response in A549 cells, while no effect was detected with the two nanomaterials on THP-1a cells. The pro-inflammatory response was strongly correlated with in vivo inflammation in mice after intra-tracheal instillation when doses were normalized against surface area. Genotoxicity was assessed as DNA strand breaks, using the alkaline comet assay. In A549 cells, an increase in DNA strand breaks was detected only in cells exposed to Bentonite, whereas Bentonite, NanofilSE3000 and GO caused an increased level of genotoxicity in THP-1a cells. Genotoxicity in THP-1a cells was concordant with the DNA damage in bronchoalveolar lavage fluid cells following 1 and 3 days after intra-tracheal instillation in mice. In conclusion, this study shows that surface modification of pristine nanoclays reduces the inflammatory and genotoxic response in A549 and THP-1a cells, and these in vitro models show comparable toxicity to what seen in previous mouse studies with the same materials.


Assuntos
Argila , Dano ao DNA , Grafite , Nanoestruturas , Células A549 , Animais , Bentonita , Grafite/toxicidade , Humanos , Pulmão , Camundongos , Nanoestruturas/toxicidade , Células THP-1
14.
Part Fibre Toxicol ; 18(1): 25, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301283

RESUMO

BACKGROUND: Multi-walled carbon nanotubes (MWCNT) have received attention due to extraordinary properties, resulting in concerns for occupational health and safety. Costs and ethical concerns of animal testing drive a need for in vitro models with predictive power in respiratory toxicity. The aim of this study was to assess pro-inflammatory response (Interleukin-8 expression, IL-8) and genotoxicity (DNA strand breaks) caused by MWCNT with different physicochemical properties in different pulmonary cell models and correlate these to previously published in vivo data. Seven MWCNT were selected; two long/thick (NRCWE-006/Mitsui-7 and NM-401), two short/thin (NM-400 and NM-403), a pristine (NRCWE-040) and two surface modified; hydroxylated (NRCWE-041) and carboxylated (NRCWE-042). Carbon black Printex90 (CB) was included as benchmark material. Human alveolar epithelial cells (A549) and monocyte-derived macrophages (THP-1a) were exposed to nanomaterials (NM) in submerged conditions, and two materials (NM-400 and NM-401) in co-cultures of A549/THP-1a and lung fibroblasts (WI-38) in an air-liquid interface (ALI) system. Effective doses were quantified by thermo-gravimetric-mass spectrometry analysis (TGA-MS). To compare genotoxicity in vitro and in vivo, we developed a scoring system based on a categorization of effects into standard deviation (SD) units (< 1, 1, 2, 3 or 4 standard deviation increases) for the increasing genotoxicity. RESULTS: Effective doses were shown to be 25 to 53%, and 21 to 57% of the doses administered to A549 and THP-1a, respectively. In submerged conditions (A549 and THP-1a cells), all NM induced dose-dependent IL-8 expression. NM-401 and NRCWE-006 caused the strongest pro-inflammatory response. In the ALI-exposed co-culture, only NM-401 caused increased IL-8 expression, and no DNA strand breaks were observed. Strong correlations were found between in vitro and in vivo inflammation when doses were normalized by surface area (also proxy for diameter and length). Significantly increased DNA damage was found for all MWCNT in THP-1a cells, and for short MWCNT in A549 cells. A concordance in genotoxicity of 83% was obtained between THP-1a cells and broncho-alveolar lavaged (BAL) cells. CONCLUSION: This study shows correlations of pro-inflammatory potential in A549 and THP-1a cells with neutrophil influx in mice, and concordance in genotoxic response between THP-1a cells and BAL cells, for seven MWCNT.


Assuntos
Nanotubos de Carbono , Células A549 , Células Epiteliais Alveolares , Animais , Dano ao DNA , Humanos , Pulmão , Camundongos , Nanotubos de Carbono/toxicidade
15.
Toxicol Sci ; 183(1): 184-194, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34086969

RESUMO

Carbon nanotubes (CNTs) are speculated to cause mesothelioma by persistent inflammation, oxidative stress, tissue injury, and genotoxicity. To investigate the pleural response to CNTs, we exposed C57BL/6 mice by intrapleural injection of 0.2 or 5 µg multiwalled CNTs (MWCNT-7, NM-401, and NM-403) or single-walled CNTs (NM-411). Inflammatory response, cellular reactive oxygen species (ROS) production of pleural lavage cells, and genotoxicity in cells from the mesothelial surface were assessed at days 1 and 90 after the exposure. Long and rigid types of MWCNTs (MWCNT-7 and NM-401) caused acute inflammation, characterized by influx of macrophages, neutrophils, and eosinophils into the pleural cavity. The inflammation was still evident at 90 days after the exposure, although it had reduced dramatically. The cellular ROS production was increased at day 90 after the exposure to MWCNT-7 and NM-401. The short and tangled type of MWCNT (ie NM-403) did not cause pleural inflammation or ROS production in pleural fluid cells. The exposure to NM-411 did not cause consistent inflammation responses or cellular ROS production. Levels of DNA strand breaks and DNA oxidation damage were unaltered, except for NM-411-exposed mice that had increased levels of DNA strand breaks at 90 days after the exposure. In conclusion, the long and rigid CNTs caused prolonged inflammatory response and increased ROS production in pleural lavage cells, yet it was not reflected in higher levels of DNA damage in pleural tissue.


Assuntos
Nanotubos de Carbono , Animais , Dano ao DNA , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Nanotubos de Carbono/toxicidade , Espécies Reativas de Oxigênio
16.
Nat Nanotechnol ; 16(6): 644-654, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34017099

RESUMO

Nanotechnology is a key enabling technology with billions of euros in global investment from public funding, which include large collaborative projects that have investigated environmental and health safety aspects of nanomaterials, but the reuse of accumulated data is clearly lagging behind. Here we summarize challenges and provide recommendations for the efficient reuse of nanosafety data, in line with the recently established FAIR (findable, accessible, interoperable and reusable) guiding principles. We describe the FAIR-aligned Nanosafety Data Interface, with an aggregated findability, accessibility and interoperability across physicochemical, bio-nano interaction, human toxicity, omics, ecotoxicological and exposure data. Overall, we illustrate a much-needed path towards standards for the optimized use of existing data, which avoids duplication of efforts, and provides a multitude of options to promote safe and sustainable nanotechnology.

17.
Nanotoxicology ; 15(5): 661-672, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33899660

RESUMO

Carbon nanotubes (CNTs) are fiber-like nanomaterials, which are used in various applications with possible exposure to humans. The genotoxicity and carcinogenic potential of CNTs remain to be fully understood. This study assessed the genotoxicity of three different multi-walled carbon nanotubes (MWCNTs) (MWCNT-7, NM-401 and NM-403) and one single-walled carbon nanotube (SWCNT) (NM-411) in FE1-Muta™Mouse lung epithelial (MML) cells using the alkaline comet assay. With the 2',7'-dichlorodihydrofluorescein diacetate fluorescent probe, we assessed the effect of CNT-exposure on the intracellular production of reactive oxygen species (ROS). We measured the effect of a 10-week CNT exposure on telomere length using quantitative PCR. Two of the included MWCNTs (NM-401 and MWCNT-7) and the SWCNT (NM-411) caused a significant increase in the level of DNA damage at concentrations up to 40 µg/ml (all concentrations pooled, p < 0.05), but no concentration-response relationships were found. All of the CNTs caused an increase in intracellular ROS production compared to unexposed cells (ptrend < 0.05). Results from the long-term exposure showed longer telomere length in cells exposed to MWCNTs compared to unexposed cells (p < 0.01). In conclusion, our results indicated that the included CNTs cause ROS production and DNA strand breaks in FE1-MML cells. Moreover, the MWCNTs, but not the SWCNT, had an impact on telomere length in a long-term exposure scenario.


Assuntos
Dano ao DNA , Nanotubos de Carbono , Telômero , Células Epiteliais , Humanos , Pulmão/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Espécies Reativas de Oxigênio
18.
FASEB J ; 35(3): e21307, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33638910

RESUMO

Airway exposure to eg particulate matter is associated with cardiovascular disease including atherosclerosis. Acute phase genes, especially Serum Amyloid A3 (Saa3), are highly expressed in the lung following pulmonary exposure to particles. We aimed to investigate whether the human acute phase protein SAA (a homolog to mouse SAA3) accelerated atherosclerotic plaque progression in Apolipoprotein E knockout (ApoE-/- ) mice. Mice were intratracheally (i.t.) instilled with vehicle (phosphate buffered saline) or 2 µg human SAA once a week for 10 weeks. Plaque progression was assessed in the aorta using noninvasive ultrasound imaging of the aorta arch as well as by en face analysis. Additionally, lipid peroxidation, SAA3, and cholesterol were measured in plasma, inflammation was determined in lung, and mRNA levels of the acute phase genes Saa1 and Saa3 were measured in the liver and lung, respectively. Repeated i.t. instillation with SAA caused a significant progression in the atherosclerotic plaques in the aorta (1.5-fold). Concomitantly, SAA caused a statistically significant increase in neutrophils in bronchoalveolar lavage fluid (625-fold), in pulmonary Saa3 (196-fold), in systemic SAA3 (1.8-fold) and malondialdehyde levels (1.14-fold), indicating acute phase response (APR), inflammation and oxidative stress. Finally, pulmonary exposure to SAA significantly decreased the plasma levels of very low-density lipoproteins - low-density lipoproteins and total cholesterol, possibly due to lipids being sequestered in macrophages or foam cells in the arterial wall. Combined these results indicate the importance of the pulmonary APR and SAA3 for plaque progression.


Assuntos
Apolipoproteínas E/fisiologia , Aterosclerose/etiologia , Pulmão/metabolismo , Proteína Amiloide A Sérica/toxicidade , Animais , Aorta Torácica/diagnóstico por imagem , Feminino , Lipídeos/sangue , Malondialdeído/sangue , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Proteína Amiloide A Sérica/genética
19.
NanoImpact ; 23: 100335, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-35559836

RESUMO

Moving towards safe and sustainable innovations is an international policy ambition. In the on-hand manuscript, a concept combining safe by design and sustainability was implemented through the integration of human and environmental risk assessment, life cycle assessment as well as an assessment of the economic viability. The result is a nested and iterative process in form of a decision tree that integrates these three elements in order to achieve sustainable, safe and competitive materials, products or services. This approach, embedded into the stage-gate-model for safe by design, allows to reduce the uncertainty related to the assessment of risks and impacts by improving the quality of the data collected along each stage. In the second part of the manuscript, the application is shown for a case study dealing with the application of nanoparticles for Li-Ion batteries. One of the general conclusions out of this case study is that data gaps are a key aspect in view of the reliability of the results.


Assuntos
Nanoestruturas , Animais , Humanos , Estágios do Ciclo de Vida , Reprodutibilidade dos Testes , Medição de Risco/métodos , Fatores Socioeconômicos
20.
NanoImpact ; 22: 100314, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-35559971

RESUMO

Here we describe the development of an Integrated Approach to Testing and Assessment (IATA) to support the grouping of different types (nanoforms; NFs) of High Aspect Ratio Nanomaterials (HARNs), based on their potential to cause mesothelioma. Hazards posed by the inhalation of HARNs are of particular concern as they exhibit physical characteristics similar to pathogenic asbestos fibres. The approach for grouping HARNs presented here is part of a framework to provide guidance and tools to group similar NFs and aims to reduce the need to assess toxicity on a case-by-case basis. The approach to grouping is hypothesis-driven, in which the hypothesis is based on scientific evidence linking critical physicochemical descriptors for NFs to defined fate/toxicokinetic and hazard outcomes. The HARN IATA prompts users to address relevant questions (at decision nodes; DNs) regarding the morphology, biopersistence and inflammatory potential of the HARNs under investigation to provide the necessary evidence to accept or reject the grouping hypothesis. Each DN in the IATA is addressed in a tiered manner, using data from simple in vitro or in silico methods in the lowest tier or from in vivo approaches in the highest tier. For these proposed methods we provide justification for the critical descriptors and thresholds that allow grouping decisions to be made. Application of the IATA allows the user to selectively identify HARNs which may pose a mesothelioma hazard, as demonstrated through a literature-based case study. By promoting the use of alternative, non-rodent approaches such as in silico modelling, in vitro and cell-free tests in the initial tiers, the IATA testing strategy streamlines information gathering at all stages of innovation through to regulatory risk assessment while reducing the ethical, time and economic burden of testing.


Assuntos
Amianto , Mesotelioma Maligno , Mesotelioma , Nanoestruturas , Amianto/toxicidade , Humanos , Mesotelioma/induzido quimicamente , Nanoestruturas/efeitos adversos , Medição de Risco/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...