Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Stroke Res ; 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37326791

RESUMO

Repulsive guidance molecule A (RGMa) is an inhibitor of neuronal growth and survival which is upregulated in the damaged central nervous system following acute spinal cord injury (SCI), traumatic brain injury, acute ischemic stroke (AIS), and other neuropathological conditions. Neutralization of RGMa is neuroprotective and promotes neuroplasticity in several preclinical models of neurodegeneration and injury including multiple sclerosis, AIS, and SCI. Given the limitations of current treatments for AIS due to narrow time windows to intervention (TTI), and restrictive patient selection criteria, there is significant unmet need for therapeutic agents that enable tissue survival and repair following acute ischemic damage for a broader population of stroke patients. In this preclinical study, we evaluated whether elezanumab, a human anti-RGMa monoclonal antibody, could improve neuromotor function and modulate neuroinflammatory cell activation following AIS with delayed intervention times up to 24 h using a rabbit embolic permanent middle cerebral artery occlusion model (pMCAO). In two replicate 28-day pMCAO studies, weekly intravenous infusions of elezanumab, over a range of doses and TTIs of 6 and 24 h after stroke, significantly improved neuromotor function in both pMCAO studies when first administered 6 h after stroke. All elezanumab treatment groups, including the 24 h TTI group, had significantly less neuroinflammation as assessed by microglial and astrocyte activation. The novel mechanism of action and potential for expanding TTI in human AIS make elezanumab distinct from current acute reperfusion therapies, and support evaluation in clinical trials of acute CNS damage to determine optimal dose and TTI in humans. A: Ramified/resting astrocytes and microglia in a normal, uninjured rabbit brain. B: Rabbit pMCAO brain illustrating lesion on right side of brain (red), surrounded by penumbra (pink) during acute phase post stroke, with minimal injury to left brain hemisphere. Penumbra characterized by activated astrocytes and microglia (region in crosshair within circle), with upregulation of free and bound RGMa. C: Elezanumab binds to both free and bound RGMa, preventing full activation of astrocytes and microglia. D: Elezanumab is efficacious in rabbit pMCAO with a 4 × larger TTI window vs. tPA (6 vs. 1.5 h, respectively). In human AIS, tPA is approved for a TTI of 3-4.5 h. Elezanumab is currently being evaluated in a clinical Ph2 study of AIS to determine the optimal dose and TTI (NCT04309474).

2.
Neurobiol Dis ; 172: 105812, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35810963

RESUMO

Spinal cord injury (SCI) elicits a cascade of degenerative events including cell death, axonal degeneration, and the upregulation of inhibitory molecules which limit repair. Repulsive guidance molecule A (RGMa) is an axon growth inhibitor which is also involved in neuronal cell death and differentiation. SCI causes upregulation of RGMa in the injured rodent, non-human primate, and human spinal cord. Recently, we showed that delayed administration of elezanumab, a high affinity human RGMa-specific monoclonal antibody, promoted neuroprotective and regenerative effects following thoracic SCI. Since most human traumatic SCI is at the cervical level, and level-dependent anatomical and molecular differences may influence pathophysiological responses to injury and treatment, we examined the efficacy of elezanumab and its therapeutic time window of administration in a clinically relevant rat model of cervical impact-compression SCI. Pharmacokinetic analysis of plasma and spinal cord tissue lysate showed comparable levels of RGMa antibodies with delayed administration following cervical SCI. At 12w after SCI, elezanumab promoted long term benefits including perilesional sparing of motoneurons and increased neuroplasticity of key descending pathways involved in locomotion and fine motor function. Elezanumab also promoted growth of corticospinal axons into spinal cord gray matter and enhanced serotonergic innervation of the ventral horn to form synaptic connections caudal to the cervical lesion. Significant recovery in grip and trunk/core strength, locomotion and gait, and spontaneous voiding ability was found in rats treated with elezanumab either immediately post-injury or at 3 h post-SCI, and improvements in specific gait parameters were found when elezanumab was delayed to 24 h post-injury. We also developed a new locomotor score, the Cervical Locomotor Score, a simple and sensitive measure of trunk/core and limb strength and stability during dynamic locomotion.


Assuntos
Medula Cervical , Traumatismos da Medula Espinal , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Medula Cervical/metabolismo , Proteínas Ligadas por GPI , Humanos , Proteínas de Membrana , Proteínas do Tecido Nervoso/metabolismo , Ratos , Recuperação de Função Fisiológica/fisiologia , Medula Espinal/patologia , Traumatismos da Medula Espinal/patologia
3.
Neuropathol Appl Neurobiol ; 48(4): e12800, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35156715

RESUMO

AIMS: An obstacle to developing new treatment strategies for Alzheimer's disease (AD) has been the inadequate translation of findings in current AD transgenic rodent models to the prediction of clinical outcomes. By contrast, nonhuman primates (NHPs) share a close neurobiology with humans in virtually all aspects relevant to developing a translational AD model. The present investigation used African green monkeys (AGMs) to refine an inducible NHP model of AD based on the administration of amyloid-beta oligomers (AßOs), a key upstream initiator of AD pathology. METHODS: AßOs or vehicle were repeatedly delivered over 4 weeks to age-matched young adult AGMs by intracerebroventricular (ICV) or intrathecal (IT) injections. Induction of AD-like pathology was assessed in subregions of the medial temporal lobe (MTL) by quantitative immunohistochemistry (IHC) using the AT8 antibody to detect hyperphosphorylated tau. Hippocampal volume was measured by magnetic resonance imaging (MRI) scans prior to, and after, intrathecal injections. RESULTS: IT administration of AßOs in young adult AGMs revealed an elevation of tau phosphorylation in the MTL cortical memory circuit compared with controls. The largest increases were detected in the entorhinal cortex that persisted for at least 12 weeks after dosing. MRI scans showed a reduction in hippocampal volume following AßO injections. CONCLUSIONS: Repeated IT delivery of AßOs in young adult AGMs led to an accelerated AD-like neuropathology in MTL, similar to human AD, supporting the value of this translational model to de-risk the clinical trial of diagnostic and therapeutic strategies.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Chlorocebus aethiops , Fosforilação , Primatas/metabolismo , Lobo Temporal/patologia , Proteínas tau/metabolismo
4.
Neurobiol Dis ; 155: 105385, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33991647

RESUMO

Spinal cord injury (SCI) is a devastating condition characterized by loss of function, secondary to damaged spinal neurons, disrupted axonal connections, and myelin loss. Spontaneous recovery is limited, and there are no approved pharmaceutical treatments to reduce ongoing damage or promote repair. Repulsive guidance molecule A (RGMa) is upregulated following injury to the central nervous system (CNS), where it is believed to induce neuronal apoptosis and inhibit axonal growth and remyelination. We evaluated elezanumab, a human anti-RGMa monoclonal antibody, in a novel, newly characterized non-human primate (NHP) hemicompression model of thoracic SCI. Systemic intravenous (IV) administration of elezanumab over 6 months was well tolerated and associated with significant improvements in locomotor function. Treatment of animals for 16 weeks with a continuous intrathecal infusion of elezanumab below the lesion was not efficacious. IV elezanumab improved microstructural integrity of extralesional tissue as reflected by higher fractional anisotropy and magnetization transfer ratios in treated vs. untreated animals. IV elezanumab also reduced SCI-induced increases in soluble RGMa in cerebrospinal fluid, and membrane bound RGMa rostral and caudal to the lesion. Anterograde tracing of the corticospinal tract (CST) from the contralesional motor cortex following 20 weeks of IV elezanumab revealed a significant increase in the density of CST fibers emerging from the ipsilesional CST into the medial/ventral gray matter. There was a significant sprouting of serotonergic (5-HT) fibers rostral to the injury and in the ventral horn of lower thoracic regions. These data demonstrate that 6 months of intermittent IV administration of elezanumab, beginning within 24 h after a thoracic SCI, promotes neuroprotection and neuroplasticity of key descending pathways involved in locomotion. These findings emphasize the mechanisms leading to improved recovery of neuromotor functions with elezanumab in acute SCI in NHPs.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas do Tecido Nervoso/antagonistas & inibidores , Plasticidade Neuronal/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/genética , Chlorocebus aethiops , Teste de Esforço/métodos , Humanos , Injeções Espinhais , Masculino , Plasticidade Neuronal/fisiologia , Neuroproteção/fisiologia , Primatas , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Vértebras Torácicas/lesões
5.
Neurobiol Dis ; 143: 104995, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32590037

RESUMO

Spinal cord injury (SCI) often results in permanent functional loss due to a series of degenerative events including cell death, axonal damage, and the upregulation of inhibitory proteins that impede regeneration. Repulsive Guidance Molecule A (RGMa) is a potent inhibitor of axonal growth that is rapidly upregulated following injury in both the rodent and human central nervous system (CNS). Previously, we showed that monoclonal antibodies that specifically block inhibitory RGMa signaling promote neuroprotective and regenerative effects when administered acutely in a clinically relevant rat model of thoracic SCI. However, it is unknown whether systemic administration of RGMa blocking antibodies are effective for SCI after delayed administration. Here, we administered elezanumab, a human monoclonal antibody targeting RGMa, intravenously either acutely or at 3 h or 24 h following thoracic clip impact-compression SCI. Rats treated with elezanumab acutely and at 3 h post-injury showed improvements in overground locomotion and fine motor function and gait. Rats treated 24 h post-SCI trended towards better recovery demonstrating significantly greater stride length and swing speed. Treated rats also showed greater tissue preservation with reduced lesion areas. As seen with acute treatment, delayed administration of elezanumab at 3 h post-SCI also increased perilesional neuronal sparing and serotonergic and corticospinal axonal plasticity. In addition, all elezanumab treated rats showed earlier spontaneous voiding ability and less post-trauma bladder wall hypertrophy. Together, our data demonstrate the therapeutic efficacy of delayed systemic administration of elezanumab in a rat model of SCI, and uncovers a new role for RGMa inhibition in bladder recovery following SCI.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas de Membrana/antagonistas & inibidores , Proteínas do Tecido Nervoso/antagonistas & inibidores , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/fisiopatologia , Animais , Feminino , Humanos , Ratos , Ratos Wistar , Micção/efeitos dos fármacos
6.
Neuropsychopharmacology ; 40(8): 1979-89, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25669604

RESUMO

Stress-induced activation of the hypothalamo-pituitary-adrenocortical (HPA) axis and high circulating glucocorticoid levels are well known to impair the retrieval of memory. Vasopressin can activate the HPA axis by stimulating vasopressin 1b (V1b) receptors located on the pituitary. In the present study, we investigated the effect of A-988315, a selective and highly potent non-peptidergic V1b-receptor antagonist with good pharmacokinetic properties, in blocking stress effects on HPA-axis activity and memory retrieval. To study cognitive performance, male Sprague-Dawley rats were trained on an object-discrimination task during which they could freely explore two identical objects. Memory for the objects and their location was tested 24 h later. A-988315 (20 or 60 mg/kg) or water was administered orally 90 min before retention testing, followed 60 min later by stress of footshock exposure. A-988315 dose-dependently dampened stress-induced increases in corticosterone plasma levels, but did not significantly alter HPA-axis activity of non-stressed control rats. Most importantly, A-988315 administration prevented stress-induced impairment of memory retrieval on both the object-recognition and the object-location tasks. A-988315 did not alter the retention of non-stressed rats and did not influence the total time spent exploring the objects or experimental context in either stressed or non-stressed rats. Thus, these findings indicate that direct antagonism of V1b receptors is an effective treatment to block stress-induced activation of the HPA axis and the consequent impairment of retrieval of different aspects of recognition memory.


Assuntos
Antagonistas dos Receptores de Hormônios Antidiuréticos/uso terapêutico , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Rememoração Mental/efeitos dos fármacos , Reconhecimento Psicológico/efeitos dos fármacos , Estresse Psicológico/complicações , Hormônio Adrenocorticotrópico/sangue , Animais , Arginina Vasopressina/farmacocinética , Corticosterona/sangue , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Humanos , Masculino , Piperazinas/farmacologia , Ligação Proteica/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de Ocitocina/metabolismo , Receptores de Vasopressinas/metabolismo , Sulfonamidas/farmacologia , Fatores de Tempo , Trítio/farmacocinética
7.
BMC Vet Res ; 8: 185, 2012 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-23035739

RESUMO

BACKGROUND: Pain and impaired mobility because of osteoarthritis (OA) is common in dogs and humans. Efficacy studies of analgesic drug treatment of dogs with naturally occurring OA may be challenging, as a caregiver placebo effect is typically evident. However, little is known about effect sizes of common outcome-measures in canine clinical trials evaluating treatment of OA pain. Forty-nine client-owned dogs with hip OA were enrolled in a randomized, double-blinded placebo-controlled prospective trial. After a 1 week baseline period, dogs were randomly assigned to a treatment (ABT-116 - transient receptor potential vanilloid 1 (TRPV1) antagonist, Carprofen - non-steroidal anti-inflammatory drug (NSAID), Tramadol - synthetic opiate, or Placebo) for 2 weeks. Outcome-measures included physical examination parameters, owner questionnaire, activity monitoring, gait analysis, and use of rescue medication. RESULTS: Acute hyperthermia developed after ABT-116 treatment (P < 0.001). Treatment with carprofen (P ≤ 0.01) and tramadol (P ≤ 0.001) led to improved mobility assessed by owner questionnaire. Nighttime activity was increased after ABT-116 treatment (P = 0.01). Kinetic gait analysis did not reveal significant treatment effects. Use of rescue treatment decreased with treatment in the ABT-116 and Carprofen groups (P < 0.001). Questionnaire score and activity count at the end of treatment were correlated with age, clinical severity at trial entry, and outcome measure baseline status (SR ≥ ±0.40, P ≤ 0.005). Placebo treatment effects were evident with all variables studied. CONCLUSION: Treatment of hip OA in client-owned dogs is associated with a placebo effect for all variables that are commonly used for efficacy studies of analgesic drugs. This likely reflects caregiver bias or the phenomenon of regression to the mean. In the present study, outcome measures with significant effects also varied between groups, highlighting the value of using multiple outcome measures, as well as an a priori analysis of effect size associated with each measure. Effect size data from the present study could be used to inform design of future trials studying analgesic treatment of canine OA. Our results suggest that analgesic treatment with ABT-116 is not as effective as carprofen or tramadol for treatment of hip arthritis pain in client-owned dogs.


Assuntos
Carbazóis/uso terapêutico , Doenças do Cão/tratamento farmacológico , Indazóis/uso terapêutico , Osteoartrite do Quadril/veterinária , Compostos de Fenilureia/uso terapêutico , Tramadol/uso terapêutico , Analgésicos Opioides/efeitos adversos , Analgésicos Opioides/uso terapêutico , Animais , Anti-Inflamatórios não Esteroides/efeitos adversos , Anti-Inflamatórios não Esteroides/uso terapêutico , Temperatura Corporal/efeitos dos fármacos , Carbazóis/efeitos adversos , Cães , Método Duplo-Cego , Feminino , Frequência Cardíaca/efeitos dos fármacos , Indazóis/efeitos adversos , Coxeadura Animal/tratamento farmacológico , Masculino , Osteoartrite do Quadril/tratamento farmacológico , Dor/tratamento farmacológico , Dor/veterinária , Compostos de Fenilureia/efeitos adversos , Efeito Placebo , Respiração/efeitos dos fármacos , Tramadol/efeitos adversos , Resultado do Tratamento
8.
Biochem Pharmacol ; 82(8): 967-76, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21620806

RESUMO

Positive modulation of the neuronal nicotinic acetylcholine receptor (nAChR) α4ß2 subtype by selective positive allosteric modulator NS-9283 has shown to potentiate the nAChR agonist ABT-594-induced anti-allodynic activity in preclinical neuropathic pain. To determine whether this benefit can be extended beyond neuropathic pain, the present study examined the analgesic activity and adverse effect profile of co-administered NS-9283 and ABT-594 in a variety of preclinical models in rats. The effect of the combined therapy on drug-induced brain activities was also determined using pharmacological magnetic resonance imaging. In carrageenan-induced thermal hyperalgesia, co-administration of NS-9283 (3.5 µmol/kg, i.p.) induced a 6-fold leftward shift of the dose-response of ABT-594 (ED(50)=26 vs. 160 nmol/kg, i.p.). In the paw skin incision model of post-operative pain, co-administration of NS-9283 similarly induced a 6-fold leftward shift of ABT-594 (ED(50)=26 vs. 153 nmol/kg). In monoiodo-acetate induced knee joint pain, co-administration of NS-9283 enhanced the potency of ABT-594 by 5-fold (ED(50)=1.0 vs. 4.6 nmol/kg). In pharmacological MRI, co-administration of NS-9283 was shown to lead to a leftward shift of ABT-594 dose-response for cortical activation. ABT-594 induced CNS-related adverse effects were not exacerbated in presence of an efficacious dose of NS-9283 (3.5 µmol/kg). Acute challenge of NS-9283 produced no cross sensitization in nicotine-conditioned animals. These results demonstrate that selective positive allosteric modulation at the α4ß2 nAChR potentiates nAChR agonist-induced analgesic activity across neuropathic and nociceptive preclinical pain models without potentiating ABT-594-mediated adverse effects, suggesting that selective positive modulation of α4ß2 nAChR by PAM may represent a novel analgesic approach.


Assuntos
Analgésicos/uso terapêutico , Azetidinas/uso terapêutico , Agonistas Nicotínicos/uso terapêutico , Oxidiazóis/uso terapêutico , Dor/tratamento farmacológico , Piridinas/uso terapêutico , Receptores Nicotínicos/metabolismo , Regulação Alostérica , Analgésicos/administração & dosagem , Analgésicos/efeitos adversos , Animais , Azetidinas/administração & dosagem , Azetidinas/efeitos adversos , Comportamento Animal/efeitos dos fármacos , Temperatura Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Quimioterapia Combinada , Imageamento por Ressonância Magnética , Masculino , Agonistas Nicotínicos/administração & dosagem , Agonistas Nicotínicos/efeitos adversos , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Oxidiazóis/administração & dosagem , Oxidiazóis/efeitos adversos , Dor/metabolismo , Piridinas/administração & dosagem , Piridinas/efeitos adversos , Ratos , Ratos Sprague-Dawley
9.
J Neurosci ; 31(14): 5406-13, 2011 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-21471376

RESUMO

Mounting evidence suggests excessive glucocorticoid activity may contribute to Alzheimer's disease (AD) and age-associated memory impairment. 11ß-hydroxysteroid dehydrogenase type-1 (HSD1) regulates conversion of glucocorticoids from inactive to active forms. HSD1 knock-out mice have improved cognition, and the nonselective inhibitor carbenoxolone improved verbal memory in elderly men. Together, these data suggest that HSD1 inhibition may be a potential therapy for cognitive deficits, such as those associated with AD. To investigate this, we characterized two novel and selective HSD1 inhibitors, A-918446 and A-801195. Learning, memory consolidation, and recall were evaluated in mouse 24 h inhibitory avoidance. Inhibition of brain cortisol production and phosphorylation of cAMP response element-binding protein (CREB), a transcription factor involved in cognition, were also examined. Rats were tested in a short-term memory model, social recognition, and in a separate group cortical and hippocampal acetylcholine release was measured via in vivo microdialysis. Acute treatment with A-801195 (10-30 mg/kg) or A-918446 (3-30 mg/kg) inhibited cortisol production in the ex vivo assay by ∼ 35-90%. Acute treatment with A-918446 improved memory consolidation and recall in inhibitory avoidance and increased CREB phosphorylation in the cingulate cortex. Acute treatment with A-801195 significantly improved short-term memory in rat social recognition that was not likely due to alterations of the cholinergic system, as acetylcholine release was not increased in a separate set of rats. These studies suggest that selective HSD1 inhibitors work through a novel, noncholinergic mechanism to facilitate cognitive processing.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Memória/fisiologia , Análise de Variância , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Encéfalo/enzimologia , Proteína de Ligação a CREB/metabolismo , Inibidores da Colinesterase/farmacologia , Donepezila , Relação Dose-Resposta a Droga , Eletrochoque/efeitos adversos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Hidrocortisona/metabolismo , Técnicas In Vitro , Indanos/farmacologia , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Microdiálise/métodos , Modelos Animais , Testes Neuropsicológicos , Fosforilação/efeitos dos fármacos , Piperidinas/farmacologia , Ensaio Radioligante , Ratos , Ratos Sprague-Dawley , Comportamento Social
10.
J Biol Chem ; 282(31): 22765-74, 2007 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-17550900

RESUMO

The c-Jun N-terminal kinases (JNKs) have been implicated in the development of insulin resistance, diabetes, and obesity. Genetic disruption of JNK1, but not JNK2, improves insulin sensitivity in diet-induced obese (DIO) mice. We applied RNA interference to investigate the specific role of hepatic JNK1 in contributing to insulin resistance in DIO mice. Adenovirus-mediated delivery of JNK1 short-hairpin RNA (Ad-shJNK1) resulted in almost complete knockdown of hepatic JNK1 protein without affecting JNK1 protein in other tissues. Liver-specific knockdown of JNK1 resulted in significant reductions in circulating insulin and glucose levels, by 57 and 16%, respectively. At the molecular level, JNK1 knockdown mice had sustained and significant increase of hepatic Akt phosphorylation. Furthermore, knockdown of JNK1 enhanced insulin signaling in vitro. Unexpectedly, plasma triglyceride levels were robustly elevated upon hepatic JNK1 knockdown. Concomitantly, expression of proliferator-activated receptor gamma coactivator 1 beta, glucokinase, and microsomal triacylglycerol transfer protein was increased. Further gene expression analysis demonstrated that knockdown of JNK1 up-regulates the hepatic expression of clusters of genes in glycolysis and several genes in triglyceride synthesis pathways. Our results demonstrate that liver-specific knockdown of JNK1 lowers circulating glucose and insulin levels but increases triglyceride levels in DIO mice.


Assuntos
Regulação Enzimológica da Expressão Gênica , Glucose/metabolismo , Insulina/metabolismo , Fígado/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Transativadores/biossíntese , Triglicerídeos/sangue , Adenoviridae/genética , Adenoviridae/metabolismo , Ração Animal , Animais , Primers do DNA/química , Camundongos , Camundongos Obesos , PPAR gama/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fosforilação , Fatores de Transcrição , Triglicerídeos/metabolismo
11.
Front Biosci ; 12: 3781-94, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17485339

RESUMO

Stearoyl-CoA desaturases (SCDs) catalyze the biosynthesis of monounsaturated fatty acids from saturated fatty acids. Four scd genes have been identified in mice and three in human (including one pseudogene). Among the four mouse SCD isoforms, SCD1 is predominantly expressed in liver and adipose tissue. Mice null for the scd1 gene have reduced adiposity, increased energy expenditure and altered lipid profiles. To further evaluate the specific role of hepatic SCD1 and the potential to achieve similar desirable phenotypic changes in adult obese mice, adenovirus-mediated short hairpin interfering RNA (shRNA) was used to acutely knock down hepatic scd1 expression in ob/ob mice. Robust reductions in hepatic SCD1 mRNA and SCD1 enzymatic activity were achieved, sustained up to 2 weeks. Reduced hepatic content of neutral lipids and robust lowering of lipid desaturation indexes, but increased content of liver phosphotidylcholine were observed with SCD1 knockdown. Increased total plasma cholesterol levels were also observed. No significant changes in body weight were observed. Expression levels of several lipogenic and lipid oxidation genes were not significantly altered by short term SCD1 reduction, but UCP2 expression was increased. Our results demonstrate that significant changes to both hepatic and systemic lipid profiles can be achieved through specific knockdown of liver-expressed SCD1 in the ob/ob mouse model. However, hepatic SCD1 knockdown does not result in significant changes in body weight in the short term.


Assuntos
Ácidos Graxos/química , Lipídeos/química , Fígado/enzimologia , Obesidade/enzimologia , Interferência de RNA , Estearoil-CoA Dessaturase/metabolismo , Animais , Camundongos , Obesidade/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
J Med Chem ; 50(1): 149-64, 2007 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-17201418

RESUMO

Starting from a rapidly metabolized adamantane 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) inhibitor 22a, a series of E-5-hydroxy-2-adamantamine inhibitors, exemplified by 22d and (+/-)-22f, was discovered. Many of these compounds are potent inhibitors of 11beta-HSD1 and are selective over 11beta-HSD2 for multiple species (human, mouse, and rat), unlike other reported species-selective series. These compounds have good cellular potency and improved microsomal stability. Pharmacokinetic profiling in rodents indicated moderate to large volumes of distribution, short half-lives, and a pharmacokinetic species difference with the greatest exposure measured in rat with 22d. One hour postdose liver, adipose, and brain tissue 11beta-HSD1 inhibition was confirmed with (+/-)-22f in a murine ex vivo assay. Although 5,7-disubstitued-2-adamantamines provided greater stability, a single, E-5-position, polar functional group afforded inhibitors with the best combination of stability, potency, and selectivity. These results indicate that adamantane metabolic stabilization sufficient to obtain short-acting, potent, and selective 11beta-HSD1 inhibitors has been discovered.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Adamantano/análogos & derivados , Adamantano/síntese química , Piperazinas/síntese química , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , Adamantano/farmacocinética , Animais , Linhagem Celular , Humanos , Técnicas In Vitro , Camundongos , Microssomos Hepáticos/metabolismo , Piperazinas/farmacocinética , Ratos , Estereoisomerismo , Relação Estrutura-Atividade , Distribuição Tecidual
13.
Mar Drugs ; 5(3): 113-35, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18458762

RESUMO

The excitatory amino acid domoic acid is the causative agent of amnesic shellfish poisoning in humans. The in vitro effects of domoic acid on rat neonatal brain microglia were compared with E. coli lipopolysaccharide (LPS), a known activator of microglia mediator release over a 4 to 24 hour observation period. LPS [3 ng/mL] but not domoic acid [1 mM] stimulated a statistically significant increase in TNF-alpha mRNA and protein generation. Furthermore, both LPS and domoic acid did not significantly affect TGF-beta1 gene expression and protein release. Finally, an in vitro exposure of microglia to LPS resulted in statistically significant MMP-9 expression and release, thus extending and confirming our previous observations. However, in contrast, no statistically significant increase in MMP-9 expression and release was observed after domoic acid treatment. Taken together our observations do not support the hypothesis that a short term (4 to 24 hours) in vitro exposure to domoic acid, at a concentration toxic to neuronal cells, activates rat neonatal microglia and the concomitant release of the pro-inflammatory mediators tumor necrosis factor-alpha (TNF-alpha) and matrix metalloproteinases-9 (MMP-9), as well as the anti-inflammatory cytokine transforming growth factor beta1 (TGF-beta1).

14.
Bioorg Med Chem Lett ; 17(1): 40-4, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17070047

RESUMO

Libraries of mifepristone analogs, MP-Acids, were designed and synthesized to increase the chances of identifying GR antagonists that possess liver-selective pharmacological profiles. MP-Acids were uniformly potent GR antagonists in binding and in cell-based functional assays. A high throughput pharmacokinetic selection strategy that employs the cassette dosing of MP-Acids was developed to identify liver-targeting compounds. Thus, resource-intensive in vivo assays to measure liver-selective pharmacology were enriched with GR antagonists that achieve high concentrations in the liver.


Assuntos
Glucocorticoides/química , Glucocorticoides/farmacocinética , Fígado/metabolismo , Mifepristona/análogos & derivados , Receptores de Glucocorticoides/antagonistas & inibidores , Animais , Glucocorticoides/síntese química , Ratos , Ratos Endogâmicos
15.
Metabolism ; 55(9): 1255-62, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16919547

RESUMO

A liver-selective glucocorticoid (GC) receptor antagonist (A-348441) was used to determine the effect of reduced hepatic GC signaling on hepatic glucose production. Fasted conscious dogs were studied in the presence (GRA, n = 6) or absence (CON, n = 6) of the intraduodenally administered GC receptor antagonist (100 mg/kg). All dogs were maintained on a pancreatic clamp and in a euglycemic state for 7 hours to ensure that any changes in glucose metabolism were the direct result of the effects of A-348441, which was given at the start of a 5-hour experimental period. In the GRA group, the arterial plasma insulin level was 4.6 +/- 0.7 and 4.8 +/- 0.6 microU/mL during the basal and the last 30 minutes of the experimental periods, respectively. In the CON group, it was 4.0 +/- 0.3 and 4.5 +/- 0.5 microU/mL in the 2 periods, respectively. The arterial plasma glucagon level was 49 +/- 4 and 46 +/- 3 pg/mL in the 2 periods in the GRA group, and 45 +/- 3 and 42 +/- 3 pg/mL in the CON group. Net hepatic glucose balance progressively decreased in the GRA group from 1.31 +/- 0.18 to 0.49 +/- 0.30 mg/kg per minute, whereas in the CON group, net hepatic glucose balance was 1.17 +/- 0.09 and 1.43 +/- 0.18 mg/kg per minute during the basal and last 30 minutes of the experimental periods, respectively. No significant change in net renal or gut glucose balance or nonhepatic glucose uptake was observed in either group. This study demonstrates that the GC receptor plays an important role in the regulation of basal hepatic glucose production and represents a significant potential therapeutic target.


Assuntos
Glucose/biossíntese , Fígado/metabolismo , Receptores de Glucocorticoides/antagonistas & inibidores , Animais , Glicemia/análise , Ácidos Cólicos/administração & dosagem , Ácidos Cólicos/farmacologia , Cães , Estrona/administração & dosagem , Estrona/análogos & derivados , Estrona/farmacologia , Glucagon/sangue , Técnica Clamp de Glucose , Cinética
16.
Biochem Biophys Res Commun ; 349(1): 439-48, 2006 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-16935266

RESUMO

Glycerol-3-phosphate acyltransferase (GPAT) controls the first step of triglyceride (TAG) synthesis. Three distinct GPAT activities have been identified, two localized in mitochondria and one in microsomes. Mitochondrial GPAT1 (mtGPAT1) is abundantly expressed in the liver and constitutes approximately 50% of total GPAT activities in this organ. Hepatic mtGPAT1 activity is elevated in obese rodents. Mice deficient in mtGPAT1 have an improved lipid profile. To investigate if beneficial effects can result from reduced hepatic expression of mtGPAT1 in adult obese mice, adenoviral vector-based short hairpin RNA interference (shRNA) technology was used to knockdown mtGPAT1 expression in livers of ob/ob mice. Reduced expression of mtGPAT1 mRNA in liver of ob/ob mice resulted in dramatic and dose dependent reduction in mtGPAT1 activity. Reduced hepatic TAG, diacylglycerol, and free fatty acid, as well as reduced plasma cholesterol and glucose, were also observed. Fatty acid composition analysis revealed decrease of C16:0 in major lipid species. Our results demonstrate that acute reduction of mtGPAT1 in liver of ob/ob mice reduces TAG synthesis, which points to a role for mtGPAT1 in the correction of obesity and related disorders.


Assuntos
Glicerol-3-Fosfato O-Aciltransferase/fisiologia , Fígado/metabolismo , Adenoviridae/metabolismo , Animais , Sequência de Bases , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Hepatócitos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Obesos , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Obesidade/genética , Triglicerídeos/metabolismo
17.
J Med Chem ; 49(15): 4459-69, 2006 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-16854051

RESUMO

The discovery and pharmacological evaluation of potent, selective, and orally bioavailable growth hormone secretagogue receptor (GHS-R) antagonists are reported. Previously, 2,4-diaminopyrimidine-based GHS-R antagonists reported from our laboratories have been shown to be dihydrofolate reductase (DHFR) inhibitors. By comparing the X-ray crystal structure of DHFR docked with our GHS-R antagonists and GHS-R modeling, we designed and synthesized a series of potent and DHFR selective GHS-R antagonists with good pharmacokinetic (PK) profiles. An amide derivative 13d (Ca2+ flux IC50 = 188 nM, [brain]/[plasma] = 0.97 @ 8 h in rat) showed a 10% decrease in 24 h food intake in rats, and over 5% body weight reduction after 14-day oral treatment in diet-induced obese (DIO) mice. In comparison, a urea derivative 14c (Ca2+ flux IC50 = 7 nM, [brain]/[plasma] = 0.0 in DIO) failed to show significant effect on food intake in the acute feeding DIO model. These observations demonstrated for the first time that peripheral GHS-R blockage with small molecule GHS-R antagonists might not be sufficient for suppressing appetite and inducing body weight reduction.


Assuntos
Aminopiridinas/síntese química , Fármacos Antiobesidade/síntese química , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Administração Oral , Amidas/síntese química , Amidas/farmacologia , Aminopiridinas/farmacologia , Animais , Fármacos Antiobesidade/farmacologia , Depressores do Apetite/síntese química , Depressores do Apetite/farmacologia , Disponibilidade Biológica , Peso Corporal/efeitos dos fármacos , Linhagem Celular , Cristalografia por Raios X , Ingestão de Alimentos/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Modelos Moleculares , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Receptores de Grelina , Relação Estrutura-Atividade , Ureia/análogos & derivados , Ureia/síntese química , Ureia/farmacologia
18.
Endocrine ; 29(2): 375-81, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16785615

RESUMO

Dexfenfluramine (DEX) and sibutramine (SIB) are effective antiobesity agents. Their effects on weight control and hormone profile have not been previously studied in diet-switched diet-induced obese (DIO) mice, in which treatment is initiated upon cessation of a low-fat diet and resumption of a high-fat diet. Furthermore, their effects on circulating ghrelin in obese humans or in animal models of obesity have not yet been reported. Male C57Bl/6J DIO mice after 16 wk on a high-fat diet (HF, 60 kcal% fat) were switched to a low-fat diet (LF, 10 kcal% fat) for 50 d. HF diet resumed concurrently with treatment for 28 d with DEX 3 and 10 mg/kg, twice a day (BID); SIB 5 mg/kg BID; or vehicle. Rapid weight regain ensued in vehicle-treated DIO mice. DEX or SIB treatment significantly blunted the body weight gain. Caloric intake was decreased acutely by DEX or SIB vs vehicle during the first 2 d treatment, but returned to control after 5 d. At the end of study, epididymal fat weight and whole body fat mass determined by DEXA scan were decreased by DEX 10 mg/kg, and whole body lean mass decreased with DEX 3 mg/kg treatment. Circulating ghrelin on d 28 was increased with either DEX 3 or 10 mg/kg treatment, while growth hormone and insulin were decreased. Leptin was also decreased in the DEX 10 mg/kg group. SIB did not significantly affect fat mass, ghrelin, growth hormone, insulin, or leptin. Mice chronically fed LF diet maintained a lower caloric intake, gained less weight and fat mass than diet-switched mice, and had higher ghrelin and lower insulin and leptin. In summary, weight regain in diet-switched DIO mice is delayed with either DEX or SIB treatment. DEX treatment of diet-switched DIO mice decreased growth hormone, insulin, leptin, fat mass, lean mass, and increased ghrelin, while SIB only decreased body weight.


Assuntos
Fármacos Antiobesidade/farmacologia , Ciclobutanos/farmacologia , Dexfenfluramina/farmacologia , Obesidade/tratamento farmacológico , Animais , Peso Corporal/efeitos dos fármacos , Dieta com Restrição de Gorduras , Grelina , Hormônio do Crescimento/sangue , Masculino , Camundongos , Obesidade/etiologia , Obesidade/prevenção & controle , Hormônios Peptídicos/sangue , Magreza/sangue , Aumento de Peso/efeitos dos fármacos
19.
J Med Chem ; 49(8): 2568-78, 2006 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-16610800

RESUMO

Ghrelin, a gut-derived orexigenic hormone, is an endogenous ligand of the growth hormone secretagogue receptor (GHS-R). Centrally administered ghrelin has been shown to cause hunger and increase food intake in rodents. Inhibition of ghrelin actions with ghrelin antibody, peptidyl GHS-R antagonists, and antisense oligonucleosides resulted in weight loss and food intake decrease in rodents. Here we report the effects of GHS-R antagonists, some of which were potent, selective, and orally bioavailable. A structure-activity relationship study led to the discovery of 8a, which was effective in decreasing food intake and body weight in several acute rat studies.


Assuntos
Pirimidinas/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Animais , Células CHO , Cricetinae , Avaliação Pré-Clínica de Medicamentos , Humanos , Ligantes , Estrutura Molecular , Pirimidinas/síntese química , Pirimidinas/química , Receptores de Grelina , Estereoisomerismo , Relação Estrutura-Atividade , Fatores de Tempo
20.
J RNAi Gene Silencing ; 3(1): 225-36, 2006 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-19771218

RESUMO

RNA interference (RNAi) is an exciting new tool to effect acute in vivo knockdown of genes for pharmacological target validation. Testing the application of this technology to metabolic disease targets, three RNAi delivery methods were compared in two frequently utilized preclinical models of obesity and diabetes, the diet-induced obese (DIO) and B6.V-Lep/J (ob/ob) mouse. Intraperitoneal (i.p.) and high pressure hydrodynamic intravenous (i.v.) administration of naked siRNA, and low pressure i.v. administration of shRNA-expressing adenovirus were assessed for both safety and gene knockdown efficacy using constructs targeting cJun N-terminal kinase 1 (JNK1). Hydrodynamic delivery of siRNA lowered liver JNK1 protein levels 40% in DIO mice, but was accompanied by iatrogenic liver damage. The ob/ob model proved even more intolerant of this technique, with hydrodynamic delivery resulting in severe liver damage and death of most animals. While well-tolerated, i.p. injections of siRNA in DIO mice did not result in any knockdown or phenotypic changes in the mice. On the other hand, i.v. injected adenovirus expressing shRNA potently reduced expression of JNK1 in vivo by 95% without liver toxicity. In conclusion, i.p. and hydrodynamic injections of siRNA were ineffective and/or inappropriate for in vivo gene targeting in DIO and ob/ob mice, while adenovirus-mediated delivery of shRNA provided a relatively benign and effective method for exploring liver target silencing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...