Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Biofuels Bioprod ; 17(1): 63, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730312

RESUMO

BACKGROUND: The selection of Saccharomyces cerevisiae strains with higher alcohol tolerance can potentially increase the industrial production of ethanol fuel. However, the design of selection protocols to obtain bioethanol yeasts with higher alcohol tolerance poses the challenge of improving industrial strains that are already robust to high ethanol levels. Furthermore, yeasts subjected to mutagenesis and selection, or laboratory evolution, often present adaptation trade-offs wherein higher stress tolerance is attained at the expense of growth and fermentation performance. Although these undesirable side effects are often associated with acute selection regimes, the utility of using harsh ethanol treatments to obtain robust ethanologenic yeasts still has not been fully investigated. RESULTS: We conducted an adaptive laboratory evolution by challenging four populations (P1-P4) of the Brazilian bioethanol yeast, Saccharomyces cerevisiae PE-2_H4, through 68-82 cycles of 2-h ethanol shocks (19-30% v/v) and outgrowths. Colonies isolated from the final evolved populations (P1c-P4c) were subjected to whole-genome sequencing, revealing mutations in genes enriched for the cAMP/PKA and trehalose degradation pathways. Fitness analyses of the isolated clones P1c-P3c and reverse-engineered strains demonstrated that mutations were primarily selected for cell viability under ethanol stress, at the cost of decreased growth rates in cultures with or without ethanol. Under this selection regime for stress survival, the population P4 evolved a protective snowflake phenotype resulting from BUD3 disruption. Despite marked adaptation trade-offs, the combination of reverse-engineered mutations cyr1A1474T/usv1Δ conferred 5.46% higher fitness than the parental PE-2_H4 for propagation in 8% (v/v) ethanol, with only a 1.07% fitness cost in a culture medium without alcohol. The cyr1A1474T/usv1Δ strain and evolved P1c displayed robust fermentations of sugarcane molasses using cell recycling and sulfuric acid treatments, mimicking Brazilian bioethanol production. CONCLUSIONS: Our study combined genomic, mutational, and fitness analyses to understand the genetic underpinnings of yeast evolution to ethanol shocks. Although fitness analyses revealed that most evolved mutations impose a cost for cell propagation, combination of key mutations cyr1A1474T/usv1Δ endowed yeasts with higher tolerance for growth in the presence of ethanol. Moreover, alleles selected for acute stress survival comprising the P1c genotype conferred stress tolerance and optimal performance under conditions simulating the Brazilian industrial ethanol production.

2.
Curr Genet ; 68(3-4): 319-342, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35362784

RESUMO

The yeast Saccharomyces cerevisiae is an excellent candidate for establishing cell factories to convert lignocellulosic biomass into chemicals and fuels. To enable this technology, yeast robustness must be improved to withstand the fermentation inhibitors (e.g., weak organic acids, phenols, and furan aldehydes) resulting from biomass pretreatment and hydrolysis. Here, we discuss how evolution experiments performed in the lab, a method commonly known as adaptive laboratory evolution (ALE), may contribute to lifting yeast tolerance against the inhibitors of lignocellulosic hydrolysates (LCHs). The key is that, through the combination of whole-genome sequencing and reverse engineering, ALE provides a robust platform for discovering and testing adaptive alleles, allowing to explore the genetic underpinnings of yeast responses to LCHs. We review the insights gained from past evolution experiments with S. cerevisiae in LCH inhibitors and propose experimental designs to optimise the discovery of genetic variants adaptive to biomass toxicity. The knowledge gathered through ALE projects is envisaged as a roadmap to engineer superior yeast strains for biomass-based bioprocesses.


Assuntos
Etanol , Saccharomyces cerevisiae , Fermentação , Hidrólise , Lignina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
3.
Chemosphere ; 287(Pt 3): 132290, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34562707

RESUMO

Developing novel renewable (and preferably biodegradable) materials has become recurrent due to the growing concerns with environmental impacts of high volumes of plastic waste produced from oil-based sources over the past decades. This study aimed at developing bioplastics from a mixture of starch and xylan in variable ratios, and the combined effect of α-cellulose and holocellulose extracted from sugarcane bagasse added to the process. The disintegration of bioplastics was evaluated in both soil and composting. The ecotoxicity analyses with Saccharomyces cerevisiae, Bacillus subtilis and seeds of Cucumis sativus were conducted after disintegration. All formulations based on 5% (w/v) of total polysaccharides were dried at 30 °C and resulted in homogeneous and non-brittle bioplastics. The composting results showed that all bioplastic formulations disintegrated in 3 days, whereas the 25/75% (xylan/starch, w/w) formulation vanished in soil within 13 days. The ecotoxicity data showed no inhibition of microbial growth after biodegradation, yielding 100% of seed germination. Despite the positive influence of the bioplastic degradation on the root and hypocotyl growth, temporary inhibition of C. sativus tissues exposed to soil washing (10 days of disintegration) was observed. The study demonstrated that xylan/starch bioplastics result in non-ecotoxic biodegradable materials.


Assuntos
Compostagem , Amido , Biodegradação Ambiental , Plásticos/toxicidade , Xilanos
4.
Essays Biochem ; 65(2): 147-161, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34156078

RESUMO

Fuel ethanol is produced by the yeast Saccharomyces cerevisiae mainly from corn starch in the United States and from sugarcane sucrose in Brazil, which together manufacture ∼85% of a global yearly production of 109.8 million m3 (in 2019). While in North America genetically engineered (GE) strains account for ∼80% of the ethanol produced, including strains that express amylases and are engineered to produce higher ethanol yields; in South America, mostly (>90%) non-GE strains are used in ethanol production, primarily as starters in non-aseptic fermentation systems with cell recycling. In spite of intensive research exploring lignocellulosic ethanol (or second generation ethanol), this option still accounts for <1% of global ethanol production. In this mini-review, we describe the main aspects of fuel ethanol production, emphasizing bioprocesses operating in North America and Brazil. We list and describe the main properties of several commercial yeast products (i.e., yeast strains) that are available worldwide to bioethanol producers, including GE strains with their respective genetic modifications. We also discuss recent studies that have started to shed light on the genes and traits that are important for the persistence and dominance of yeast strains in the non-aseptic process in Brazil. While Brazilian bioethanol yeast strains originated from a historical process of domestication for sugarcane fermentation, leading to a unique group with significant economic applications, in U.S.A., guided selection, breeding and genetic engineering approaches have driven the generation of new yeast products for the market.


Assuntos
Saccharomyces cerevisiae , Saccharum , Etanol , Fermentação , Microbiologia Industrial , Saccharomyces cerevisiae/genética , Saccharum/genética
5.
Front Microbiol ; 12: 644089, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936002

RESUMO

Ethanol production from sugarcane is a key renewable fuel industry in Brazil. Major drivers of this alcoholic fermentation are Saccharomyces cerevisiae strains that originally were contaminants to the system and yet prevail in the industrial process. Here we present newly sequenced genomes (using Illumina short-read and PacBio long-read data) of two monosporic isolates (H3 and H4) of the S. cerevisiae PE-2, a predominant bioethanol strain in Brazil. The assembled genomes of H3 and H4, together with 42 draft genomes of sugarcane-fermenting (fuel ethanol plus cachaça) strains, were compared against those of the reference S288C and diverse S. cerevisiae. All genomes of bioethanol yeasts have amplified SNO2(3)/SNZ2(3) gene clusters for vitamin B1/B6 biosynthesis, and display ubiquitous presence of a particular family of SAM-dependent methyl transferases, rare in S. cerevisiae. Widespread amplifications of quinone oxidoreductases YCR102C/YLR460C/YNL134C, and the structural or punctual variations among aquaporins and components of the iron homeostasis system, likely represent adaptations to industrial fermentation. Interesting is the pervasive presence among the bioethanol/cachaça strains of a five-gene cluster (Region B) that is a known phylogenetic signature of European wine yeasts. Combining genomes of H3, H4, and 195 yeast strains, we comprehensively assessed whole-genome phylogeny of these taxa using an alignment-free approach. The 197-genome phylogeny substantiates that bioethanol yeasts are monophyletic and closely related to the cachaça and wine strains. Our results support the hypothesis that biofuel-producing yeasts in Brazil may have been co-opted from a pool of yeasts that were pre-adapted to alcoholic fermentation of sugarcane for the distillation of cachaça spirit, which historically is a much older industry than the large-scale fuel ethanol production.

6.
PLoS One ; 10(3): e0119221, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25774528

RESUMO

PCR fragments and linear vectors containing overlapping ends are easily assembled into a propagative plasmid by homologous recombination in Escherichia coli. Although this gap-repair cloning approach is straightforward, its existence is virtually unknown to most molecular biologists. To popularize this method, we tested critical parameters influencing the efficiency of PCR fragments cloning into PCR-amplified vectors by homologous recombination in the widely used E. coli strain DH5α. We found that the number of positive colonies after transformation increases with the length of overlap between the PCR fragment and linear vector. For most practical purposes, a 20 bp identity already ensures high-cloning yields. With an insert to vector ratio of 2:1, higher colony forming numbers are obtained when the amount of vector is in the range of 100 to 250 ng. An undesirable cloning background of empty vectors can be minimized during vector PCR amplification by applying a reduced amount of plasmid template or by using primers in which the 5' termini are separated by a large gap. DpnI digestion of the plasmid template after PCR is also effective to decrease the background of negative colonies. We tested these optimized cloning parameters during the assembly of five independent DNA constructs and obtained 94% positive clones out of 100 colonies probed. We further demonstrated the efficient and simultaneous cloning of two PCR fragments into a vector. These results support the idea that homologous recombination in E. coli might be one of the most effective methods for cloning one or two PCR fragments. For its simplicity and high efficiency, we believe that recombinational cloning in E. coli has a great potential to become a routine procedure in most molecular biology-oriented laboratories.


Assuntos
Clonagem Molecular/métodos , Escherichia coli/genética , Recombinação Homóloga , Primers do DNA/genética , Vetores Genéticos , Reação em Cadeia da Polimerase/métodos , Transformação Bacteriana
7.
Biochim Biophys Acta ; 1838(5): 1332-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24530896

RESUMO

Insulin and insulin-like growth factor 1 (IGF-I) are capable of activating similar intracellular pathways. Insulin acts mainly through its own receptor, but can also activate the IGF-I receptor (IGF-IR). The aim of this study was to investigate the involvement of the IGF-IR in the effects of insulin and IGF-I on the membrane potential of immature Sertoli cells in whole seminiferous tubules, as well as on calcium, amino acid, and glucose uptake in testicular tissue of immature rats. The membrane potential of the Sertoli cells was recorded using a standard single microelectrode technique. In calcium uptake experiments, the testes were pre-incubated with (45)Ca(2+), with or without JB1 (1 µg/mL), and then incubated with insulin (100 nM) or IGF-I (15 nM). In amino acid and glucose uptake experiments, the gonads were pre-incubated with or without JB1 (1 µg/mL) and then incubated with radiolabeled amino acid or glucose analogues in the presence of insulin (100 nM) or IGF-I (15 nM). The blockade of IGF-IR with JB1 prevented the depolarising effects of both insulin and IGF-I on membrane potential, as well as the effect of insulin on calcium uptake. JB1 also inhibited the effects of insulin and IGF-I on glucose uptake. The effect of IGF-I on amino acid transport was inhibited in the presence of JB1, whereas the effect of insulin was not. We concluded that while IGF-I seems to act mainly through its cognate receptor to induce membrane depolarisation and calcium, amino acid and glucose uptake, insulin appears to be able to elicit its effects through IGF-IR, in seminiferous tubules from immature rats.


Assuntos
Fator de Crescimento Insulin-Like I/metabolismo , Insulina/metabolismo , Receptor IGF Tipo 1/metabolismo , Túbulos Seminíferos/metabolismo , Aminoácidos/metabolismo , Animais , Transporte Biológico , Cálcio/metabolismo , Membrana Celular/metabolismo , Glucose/metabolismo , Masculino , Potenciais da Membrana , Ratos , Ratos Wistar , Células de Sertoli/metabolismo
8.
Pflugers Arch ; 465(10): 1497-505, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23636775

RESUMO

There is clear evidence that insulin and insulin-like growth factor I (IGF-I) are crucial for the normal metabolism and development of Sertoli cells. However, the mechanisms of insulin regulatory signaling remain unknown in these cells, especially during the immature period. The aim of this study was to investigate the electrophysiological effects of insulin and the effects of insulin and IGF-I on calcium uptake, amino acid, and glucose transport in whole seminiferous tubules from 12-day-old rats, as well as the involvement of PI3K/Akt signaling pathway in these effects. Insulin produces a depolarizing effect on the membrane potential of Sertoli cells in seminiferous tubules within 180 s. This effect was nullified by verapamil, an L-type voltage-dependent calcium channel blocker, therefore demonstrating a calcium-dependent depolarizing effect. Both insulin and IGF-I stimulate calcium uptake, amino acid, and glucose transport in whole testes from 12-day-old rats. These stimulatory effects of insulin and IGF-I on calcium uptake and amino acid and glucose transport on testicular tissue were nullified by wortmannin, which demonstrates the involvement of the PI3K/Akt signaling pathway in these hormonal effects.


Assuntos
Fator de Crescimento Insulin-Like I/farmacologia , Insulina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Túbulos Seminíferos/metabolismo , Aminoácidos/metabolismo , Androstadienos/farmacologia , Animais , Transporte Biológico , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Glucose/metabolismo , Masculino , Potenciais da Membrana , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Túbulos Seminíferos/citologia , Túbulos Seminíferos/efeitos dos fármacos , Túbulos Seminíferos/crescimento & desenvolvimento , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/metabolismo , Células de Sertoli/fisiologia , Transdução de Sinais , Verapamil/farmacologia , Wortmanina
9.
Life Sci ; 89(15-16): 577-83, 2011 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-21703282

RESUMO

This minireview describes the rapid signaling actions of follicle stimulating hormone (FSH) and testosterone in immature Sertoli cells mainly related to Ca(2+) inflow and the electrophysiological changes produced by hormones. The rapid membrane actions of FSH occur in a time frame of seconds to minutes, which include membrane depolarization and the stimulation of (45)Ca(2+) uptake. These effects can be prevented by pertussis toxin (PTX), suggesting that they are likely mediated by Gi-protein coupled receptor activation. Furthermore, these effects were inhibited by verapamil, a blocker of the L-type voltage-dependent Ca(2+) channel (VDCC). Finally, FSH stimulation of (45)Ca(2+) uptake was inhibited by the (phosphoinositide 3-kinase) PI3K inhibitor wortmannin. These results suggest that the rapid action of FSH on L-type Ca(2+) channel activity in Sertoli cells from pre-pubertal rats is mediated by the Gi/Gßγ/PI3Kγ pathway, independent of its effects on insulin-like growth factor type I (IGF-I). Testosterone depolarizes the membrane potential and increases the resistance and the (45)Ca(2+) uptake in Sertoli cells of the seminiferous tubules of immature rats. These actions were nullified by diazoxide (K(+)(ATP) channel opener). Testosterone actions were blocked by both PTX and the phospholipase C (PLC) inhibitor U73122, suggesting the involvement of PLC - phosphatidylinositol 4-5 bisphosphate (PIP2) hydrolysis via the Gq protein in the testosterone-mediated pathway. These results indicate that testosterone acts on the Sertoli cell membrane through the K(+)(ATP) channels and PLC-PIP2 hydrolysis, which closes the channel, depolarizes the membrane and stimulates (45)Ca(2+) uptake. These results demonstrate the existence of rapid non-classical pathways in immature Sertoli cells regulated by FSH and testosterone.


Assuntos
Cálcio/metabolismo , Hormônio Foliculoestimulante/farmacologia , Células de Sertoli/fisiologia , Transdução de Sinais/fisiologia , Testosterona/farmacologia , Animais , Canais de Cálcio Tipo L/fisiologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/fisiologia , Fenômenos Eletrofisiológicos , Células Germinativas/fisiologia , Humanos , Canais KATP/fisiologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Ratos , Células de Sertoli/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
10.
Front Physiol ; 1: 138, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21423378

RESUMO

The aim of this study was to evaluate the effect of pertussis toxin (PTX) on the depolarizing component of the action of follicle stimulating hormone (FSH) on the membrane potential (MP) of Sertoli cells, which is linked to the rapid entry of Ca(2+) into cells and to the Ca(2+)-dependent transport of neutral amino acids by the A system. This model allowed us to analyze the involvement of Gi proteins in the action of FSH in these phenomena. In parallel, using an inactive analog of insulin-like growth factor type I (IGF-1), JB1, and an anti-IGF-I antibody we investigated the possible mediating role of IGF-I on these effects of FSH because IGF-I is produced and released by testicular cells in response to stimulation by FSH and shows depolarization effects on MP similar to those from FSH. Our results have the following implications: (a) the rapid membrane actions of FSH, which occur in a time-frame of seconds to minutes and include the depolarization of the MP, and stimulation of (45)Ca(2+) uptake and [(14)C]-methyl aminoisobutyric acid ([(14)C]-MeAIB) transport, are nullified by the action of PTX and, therefore, are probably mediated by GiPCR activation; (b) the effects of FSH were also nullified by verapamil, an L-type voltage-dependent Ca(2+) channel blocker; (c) wortmannin, an inhibitor of phosphoinositide 3-kinase (PI3K), prevented FSH stimulation of (45)Ca(2+) entry and [(14)C]-MeAIB transport; and (d) these FSH actions are independent of the IGF-I effects. In conclusion, these results strongly suggest that the rapid action of FSH on L-type Ca(2+) channel activity in Sertoli cells from 10- to 12-day-old rats is mediated by the Gi/ßγ/PI3Kγ pathway, independent of the effects of IGF-I.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...