Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 13(1)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-35052418

RESUMO

We describe an infant female with a syndromic neurodevelopmental clinical phenotype and increased chromosome instability as cellular phenotype. Genotype characterization revealed heterozygous variants in genes directly or indirectly linked to DNA repair: a de novo X-linked HDAC8 pathogenic variant, a paternally inherited FANCG pathogenic variant and a maternally inherited BRCA2 variant of uncertain significance. The full spectrum of the phenotype cannot be explained by any of the heterozygous variants on their own; thus, a synergic contribution is proposed. Complementation studies showed that the FANCG gene from the Fanconi Anaemia/BRCA (FA/BRCA) DNA repair pathway was impaired, indicating that the variant in FANCG contributes to the cellular phenotype. The patient's chromosome instability represents the first report where heterozygous variant(s) in the FA/BRCA pathway are implicated in the cellular phenotype. We propose that a multigenic contribution of heterozygous variants in HDAC8 and the FA/BRCA pathway might have a role in the phenotype of this neurodevelopmental disorder. The importance of these findings may have repercussion in the clinical management of other cases with a similar synergic contribution of heterozygous variants, allowing the establishment of new genotype-phenotype correlations and motivating the biochemical study of the underlying mechanisms.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Instabilidade Cromossômica , Proteína do Grupo de Complementação G da Anemia de Fanconi/genética , Histona Desacetilases/genética , Transtornos do Neurodesenvolvimento/patologia , Fenótipo , Proteínas Repressoras/genética , Dano ao DNA , Reparo do DNA , Feminino , Humanos , Recém-Nascido , Mutação , Transtornos do Neurodesenvolvimento/genética
2.
EMBO J ; 39(23): e105432, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33073400

RESUMO

Mitotic spindle microtubules (MTs) undergo continuous poleward flux, whose driving force and function in humans remain unclear. Here, we combined loss-of-function screenings with analysis of MT-dynamics in human cells to investigate the molecular mechanisms underlying MT-flux. We report that kinesin-7/CENP-E at kinetochores (KTs) is the predominant driver of MT-flux in early prometaphase, while kinesin-4/KIF4A on chromosome arms facilitates MT-flux during late prometaphase and metaphase. Both these activities work in coordination with kinesin-5/EG5 and kinesin-12/KIF15, and our data suggest that the MT-flux driving force is transmitted from non-KT-MTs to KT-MTs by the MT couplers HSET and NuMA. Additionally, we found that the MT-flux rate correlates with spindle length, and this correlation depends on the establishment of stable end-on KT-MT attachments. Strikingly, we find that MT-flux is required to regulate spindle length by counteracting kinesin 13/MCAK-dependent MT-depolymerization. Thus, our study unveils the long-sought mechanism of MT-flux in human cells as relying on the coordinated action of four kinesins to compensate for MT-depolymerization and regulate spindle length.


Assuntos
Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromossomos , Humanos , Metáfase/fisiologia , Mitose , Fuso Acromático/fisiologia
3.
EMBO J ; 34(21): 2604-19, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26443207

RESUMO

The SMC5/6 complex is the least understood of SMC complexes. In yeast, smc5/6 mutants phenocopy mutations in sgs1, the BLM ortholog that is deficient in Bloom's syndrome (BS). We here show that NSMCE2 (Mms21, in Saccharomyces cerevisiae), an essential SUMO ligase of the SMC5/6 complex, suppresses cancer and aging in mice. Surprisingly, a mutation that compromises NSMCE2-dependent SUMOylation does not have a detectable impact on murine lifespan. In contrast, NSMCE2 deletion in adult mice leads to pathologies resembling those found in patients of BS. Moreover, and whereas NSMCE2 deletion does not have a detectable impact on DNA replication, NSMCE2-deficient cells also present the cellular hallmarks of BS such as increased recombination rates and an accumulation of micronuclei. Despite the similarities, NSMCE2 and BLM foci do not colocalize and concomitant deletion of Blm and Nsmce2 in B lymphocytes further increases recombination rates and is synthetic lethal due to severe chromosome mis-segregation. Our work reveals that SUMO- and BLM-independent activities of NSMCE2 limit recombination and facilitate segregation; functions of the SMC5/6 complex that are necessary to prevent cancer and aging in mice.


Assuntos
Envelhecimento , Neoplasias/enzimologia , Ubiquitina-Proteína Ligases/fisiologia , Animais , Linfócitos B/enzimologia , Sequência de Bases , Células Cultivadas , Segregação de Cromossomos , Quebras de DNA de Cadeia Dupla , Análise Mutacional de DNA , Replicação do DNA , Feminino , Haploinsuficiência , Humanos , Ligases , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transporte Proteico , RecQ Helicases/metabolismo , Sumoilação , Proteínas Supressoras de Tumor/fisiologia
4.
EMBO Rep ; 12(10): 1032-8, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21836640

RESUMO

One limitation for the study of chromosomal fragile sites is that they must be studied on metaphase spreads, after the breakage. We show here that bacterial lac operator (lacO) repeats are prone to spontaneous breakage, which when combined with a fluorescent lac repressor (lacR) has allowed us to track a fragile site through the cell cycle. By using this system, we show that Plk1-interacting checkpoint helicase (PICH) is already present at fragile sites during interphase, suggesting roles for this helicase beyond mitosis. In addition, we report that the oncogene Myc promotes the formation of anaphase bridges and micronuclei containing fragile-site sequences.


Assuntos
Sítios Frágeis do Cromossomo/genética , Óperon Lac/genética , Regiões Operadoras Genéticas , Anáfase , Animais , Afidicolina/farmacologia , Quebras de DNA/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Escherichia coli/genética , Camundongos , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Células NIH 3T3 , Proteínas Proto-Oncogênicas c-myc/metabolismo
5.
PLoS One ; 5(12): e15525, 2010 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-21203397

RESUMO

Chronic myeloid leukemia (CML) is a malignant clonal disorder of the hematopoietic system caused by the expression of the BCR/ABL fusion oncogene. Although it is well known that CML cells are genetically unstable, the mechanisms accounting for this genomic instability are still poorly understood. Because the Fanconi anemia (FA) pathway is believed to control several mechanisms of DNA repair, we investigated whether this pathway was disrupted in CML cells. Our data show that CML cells have a defective capacity to generate FANCD2 nuclear foci, either in dividing cells or after DNA damage. Similarly, human cord blood CD34(+) cells transduced with BCR/ABL retroviral vectors showed impaired FANCD2 foci formation, whereas FANCD2 monoubiquitination in these cells was unaffected. Soon after the transduction of CD34(+) cells with BCR/ABL retroviral vectors a high proportion of cells with supernumerary centrosomes was observed. Similarly, BCR/ABL induced a high proportion of chromosomal abnormalities, while mediated a cell survival advantage after exposure to DNA cross-linking agents. Significantly, both the impaired formation of FANCD2 nuclear foci, and also the predisposition of BCR/ABL cells to develop centrosomal and chromosomal aberrations were reverted by the ectopic expression of BRCA1. Taken together, our data show for the first time a disruption of the FA/BRCA pathway in BCR/ABL cells, suggesting that this defective pathway should play an important role in the genomic instability of CML by the co-occurrence of centrosomal amplification and DNA repair deficiencies.


Assuntos
Cromossomos/ultraestrutura , Anemia de Fanconi/metabolismo , Proteínas de Fusão bcr-abl/metabolismo , Genes BRCA1 , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Antígenos CD34/biossíntese , Linhagem Celular Tumoral , Centrossomo/ultraestrutura , Aberrações Cromossômicas , Reagentes de Ligações Cruzadas/farmacologia , Dano ao DNA , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Humanos , Microscopia de Fluorescência/métodos , Retroviridae/genética
6.
Hum Gene Ther ; 21(5): 623-30, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20001454

RESUMO

Fanconi anemia (FA) is an inherited genetic disease characterized mainly by bone marrow failure and cancer predisposition. Although gene therapy may constitute a good therapeutic option for many patients with FA, none of the clinical trials so far developed has improved the clinical status of these patients. We have proposed strategies for the genetic correction of bone marrow grafts from patients with FA, using lentiviral vectors (LVs). Here we investigate the relevance of the expression of FANCA to confer a therapeutic effect in cells from patients with FA-A, the most frequent complementation group in FA. Our data show that relatively weak promoters such as the vav or phosphoglycerate kinase (PGK) promoter confer, per copy of FANCA, physiological levels of FANCA mRNA in lymphoblastoid cell lines, whereas the cytomegalovirus and, more significantly, spleen focus-forming virus (SFFV) promoters mediated the expression of supraphysiological levels of FANCA mRNA. Insertion of the woodchuck hepatitis virus posttranscriptional regulatory element (WPRE) or a mutated WPRE into the 3' region of PGK-FANCA LVs significantly increased FANCA mRNA levels. At the protein level, however, all tested vectors conferred, per copy of FANCA, similar and physiological levels of the protein, except SFFV LVs, which again conferred supraphysiological levels of FANCA. In spite of their different activity, all tested vectors mediated a similar phenotypic correction in FA-A lymphoblastoid cell lines and also in hematopoietic progenitors from patients with FA-A. On the basis of the efficacy and safety properties of PGK LVs, a PGK LV carrying FANCA and a mutant WPRE is proposed as an optimized vector for the gene therapy of patients with FA-A.


Assuntos
Anemia de Fanconi/terapia , Terapia Genética , Vetores Genéticos/genética , Linhagem Celular , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Humanos , Mutação , Proteínas/genética , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-vav , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Vírus Formadores de Foco no Baço/genética , Vírus Formadores de Foco no Baço/metabolismo
7.
Mol Ther ; 17(6): 1083-92, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19277017

RESUMO

Previous clinical trials based on the genetic correction of purified CD34(+) cells with gamma-retroviral vectors have demonstrated clinical efficacy in different monogenic diseases, including X-linked severe combined immunodeficiency, adenosine deaminase deficient severe combined immunodeficiency and chronic granulomatous disease. Similar protocols, however, failed to engraft Fanconi anemia (FA) patients with genetically corrected cells. In this study, we first aimed to correlate the hematological status of 27 FA patients with CD34(+) cell values determined in their bone marrow (BM). Strikingly, no correlation between these parameters was observed, although good correlations were obtained when numbers of colony-forming cells (CFCs) were considered. Based on these results, and because purified FA CD34(+) cells might have suboptimal repopulating properties, we investigated the possibility of genetically correcting unselected BM samples from FA patients. Our data show that the lentiviral transduction of unselected FA BM cells mediates an efficient phenotypic correction of hematopoietic progenitor cells and also of CD34(-) mesenchymal stromal cells (MSCs), with a reported role in hematopoietic engraftment. Our results suggest that gene therapy protocols appropriate for the treatment of different monogenic diseases may not be adequate for stem cell diseases like FA. We propose a new approach for the gene therapy of FA based on the rapid transduction of unselected hematopoietic grafts with lentiviral vectors (LVs).


Assuntos
Anemia de Fanconi/metabolismo , Anemia de Fanconi/terapia , Vetores Genéticos/genética , Células-Tronco Hematopoéticas/metabolismo , Lentivirus/genética , Células-Tronco Mesenquimais/metabolismo , Antígenos CD34/metabolismo , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Linhagem Celular , Células Cultivadas , Anemia de Fanconi/patologia , Humanos
8.
J Med Genet ; 44(4): 241-9, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17105750

RESUMO

BACKGROUND: Fanconi anaemia is a heterogeneous genetic disease, where 12 complementation groups have been already described. Identifying the complementation group in patients with Fanconi anaemia constitutes a direct procedure to confirm the diagnosis of the disease and is required for the recruitment of these patients in gene therapy trials. OBJECTIVE: To determine the subtype of Fanconi anaemia patients in Spain, a Mediterranean country with a relatively high population (23%) of Fanconi anaemia patients belonging to the gypsy race. METHODS: Most patients could be subtyped by retroviral complementation approaches in peripheral blood T cells, although some mosaic patients were subtyped in cultured skin fibroblasts. Other approaches, mainly based on western blot analysis and generation of nuclear RAD51 and FANCJ foci, were required for the subtyping of a minor number of patients. RESULTS AND CONCLUSIONS: From a total of 125 patients included in the Registry of Fanconi Anaemia, samples from 102 patients were available for subtyping analyses. In 89 cases the subtype could be determined and in 8 cases exclusions of common complementation groups were made. Compared with other international studies, a skewed distribution of complementation groups was observed in Spain, where 80% of the families belonged to the Fanconi anaemia group A (FA-A) complementation group. The high proportion of gypsy patients, all of them FA-A, and the absence of patients with FA-C account for this characteristic distribution of complementation groups.


Assuntos
Algoritmos , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Anemia de Fanconi/classificação , Heterogeneidade Genética , Roma (Grupo Étnico)/genética , Células Cultivadas/química , Células Cultivadas/efeitos dos fármacos , Consanguinidade , Resistência a Medicamentos/genética , Compostos de Epóxi/farmacologia , Anemia de Fanconi/epidemiologia , Anemia de Fanconi/genética , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/análise , Proteínas de Grupos de Complementação da Anemia de Fanconi/deficiência , Fibroblastos/química , Fibroblastos/patologia , Teste de Complementação Genética , Genótipo , Humanos , Incidência , Mitomicina/farmacologia , Mosaicismo , Sistema de Registros , Retroviridae/genética , Espanha/epidemiologia , Linfócitos T/química , Linfócitos T/efeitos dos fármacos , Linfócitos T/patologia , Transdução Genética
9.
Mol Ther ; 14(4): 525-35, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16859999

RESUMO

We have investigated the hematopoietic phenotype of mice with a hypomorphic mutation in the Brca2/Fancd1 gene (Brca2(Delta27/Delta27) mutation). In contrast to observations made in other Fanconi anemia (FA) mouse models, low numbers of hematopoietic colony-forming cells (CFCs) were noted in Brca2(Delta27/Delta27) mice, either young or adult. Additionally, a high incidence of spontaneous chromosomal instability was observed in Brca2(Delta27/Delta27) bone marrow (BM) cells, but not in Brca2(+/Delta27) or Fanca(-/-) BM cells. Although Brca2(Delta27/Delta27) CFCs were not hypersensitive to ionizing radiation, a very severe hematopoietic syndrome was observed in irradiated Brca2(Delta27/Delta27) mice. Conventional BM competition experiments showed a marked repopulation defect in Brca2(Delta27/Delta27) hematopoietic stem cells (HSCs), compared to wild-type HSCs. Moreover, we have observed for the first time in a DNA repair disease model a very significant proliferation defect in Brca2(Delta27/Delta27) HSCs maintained in their natural physiological environment. The progressive repopulation of wild-type HSCs transplanted into unconditioned Brca2(Delta27/Delta27) recipients is reminiscent of the somatic mosaicism phenomenon observed in a number of genetic diseases, including FA. The hematopoietic phenotype associated with the Brca2(Delta27/Delta27) mutation suggests that this FA-D1 mouse model will constitute an important tool for the development of new therapies for FA, including gene therapy.


Assuntos
Anemia de Fanconi/patologia , Sistema Hematopoético/patologia , Animais , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Proliferação de Células , Aberrações Cromossômicas/induzido quimicamente , Modelos Animais de Doenças , Anemia de Fanconi/classificação , Anemia de Fanconi/genética , Anemia de Fanconi/terapia , Deleção de Genes , Transplante de Células-Tronco Hematopoéticas , Sistema Hematopoético/metabolismo , Sistema Hematopoético/efeitos da radiação , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Mitomicina/farmacologia , Células Mieloides/metabolismo , Células Mieloides/patologia , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...