Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38347802

RESUMO

The HIV-1 capsid has emerged as a tractable target for antiretroviral therapy. Lenacapavir, developed by Gilead Sciences, is the first capsid-targeting drug approved for medical use. Here, we investigate the effect of lenacapavir on HIV capsid stability and uncoating. We employ a single particle approach that simultaneously measures capsid content release and lattice persistence. We demonstrate that lenacapavir's potent antiviral activity is predominantly due to lethal hyperstabilisation of the capsid lattice and resultant loss of compartmentalisation. This study highlights that disrupting capsid metastability is a powerful strategy for the development of novel antivirals.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , HIV-1 , Humanos , Capsídeo , Proteínas do Capsídeo , Fármacos Anti-HIV/farmacologia
5.
Nat Microbiol ; 7(11): 1762-1776, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36289397

RESUMO

Of the 13 known independent zoonoses of simian immunodeficiency viruses to humans, only one, leading to human immunodeficiency virus (HIV) type 1(M) has become pandemic, causing over 80 million human infections. To understand the specific features associated with pandemic human-to-human HIV spread, we compared replication of HIV-1(M) with non-pandemic HIV-(O) and HIV-2 strains in myeloid cell models. We found that non-pandemic HIV lineages replicate less well than HIV-1(M) owing to activation of cGAS and TRIM5-mediated antiviral responses. We applied phylogenetic and X-ray crystallography structural analyses to identify differences between pandemic and non-pandemic HIV capsids. We found that genetic reversal of two specific amino acid adaptations in HIV-1(M) enables activation of TRIM5, cGAS and innate immune responses. We propose a model in which the parental lineage of pandemic HIV-1(M) evolved a capsid that prevents cGAS and TRIM5 triggering, thereby allowing silent replication in myeloid cells. We hypothesize that this capsid adaptation promotes human-to-human spread through avoidance of innate immune response activation.


Assuntos
Infecções por HIV , HIV-1 , Vírus da Imunodeficiência Símia , Animais , Humanos , Filogenia , Vírus da Imunodeficiência Símia/metabolismo , Capsídeo/metabolismo , HIV-1/genética , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Infecções por HIV/epidemiologia , Infecções por HIV/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
6.
Biophys Rev ; 14(1): 23-32, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35340594

RESUMO

Human immunodeficiency virus (HIV) is the most extensively researched human pathogen. Despite this massive scientific endeavour, several fundamental viral processes remain enigmatic. One such critical process is uncoating-the event that releases the viral genome from the proteinaceous shell of the capsid during infection. While this process is conceptually simple, the molecular underpinnings, timing, regulation, and cellular location of uncoating remain contentious. This review describes the hurdles that have limited our understanding in this area and presents recently deployed in vitro and in cellulo techniques that have been developed expressly with the aim of directly visualising capsid uncoating at the single-particle level and understanding the mechanics behind this essential aspect of HIV infection.

7.
Nat Struct Mol Biol ; 28(3): 278-289, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33633400

RESUMO

Trim-Away is a recently developed technology that exploits off-the-shelf antibodies and the RING E3 ligase and cytosolic antibody receptor TRIM21 to carry out rapid protein depletion. How TRIM21 is catalytically activated upon target engagement, either during its normal immune function or when repurposed for targeted protein degradation, is unknown. Here we show that a mechanism of target-induced clustering triggers intermolecular dimerization of the RING domain to switch on the ubiquitination activity of TRIM21 and induce virus neutralization or drive Trim-Away. We harness this mechanism for selective degradation of disease-causing huntingtin protein containing long polyglutamine tracts and expand the Trim-Away toolbox with highly active TRIM21-nanobody chimeras that can also be controlled optogenetically. This work provides a mechanism for cellular activation of TRIM RING ligases and has implications for targeted protein degradation technologies.


Assuntos
Proteólise , Ribonucleoproteínas/metabolismo , Ubiquitinação , Animais , Biocatálise , Linhagem Celular , Drosophila melanogaster/citologia , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/metabolismo , Camundongos , Modelos Moleculares , Optogenética , Peptídeos/metabolismo , Ligação Proteica , Multimerização Proteica , Ribonucleoproteínas/química , Ubiquitina-Proteína Ligases/metabolismo
8.
Anal Chem ; 93(8): 3786-3793, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33593049

RESUMO

The HIV capsid is a multifunctional protein capsule that mediates the delivery of the viral genetic material into the nucleus of the target cell. Host cell proteins bind to a number of repeating binding sites on the capsid to regulate steps in the replication cycle. Here, we develop a fluorescence fluctuation spectroscopy method using self-assembled capsid particles as the bait to screen for fluorescence-labeled capsid-binding analytes ("prey" molecules) in solution. The assay capitalizes on the property of the HIV capsid as a multivalent interaction platform, facilitating high sensitivity detection of multiple prey molecules that have accumulated onto capsids as spikes in fluorescence intensity traces. By using a scanning stage, we reduced the measurement time to 10 s without compromising on sensitivity, providing a rapid binding assay for screening libraries of potential capsid interactors. The assay can also identify interfaces for host molecule binding by using capsids with defects in known interaction interfaces. Two-color coincidence detection using the fluorescent capsid as the bait further allows the quantification of binding levels and determination of binding affinities. Overall, the assay provides new tools for the discovery and characterization of molecules used by the HIV capsid to orchestrate infection. The measurement principle can be extended for the development of sensitive interaction assays, utilizing natural or synthetic multivalent scaffolds as analyte-binding platforms.


Assuntos
Capsídeo , HIV-1 , Sítios de Ligação , Proteínas do Capsídeo , Espectrometria de Fluorescência
9.
PLoS Pathog ; 17(2): e1009164, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33524070

RESUMO

The HIV capsid self-assembles a protective conical shell that simultaneously prevents host sensing whilst permitting the import of nucleotides to drive DNA synthesis. This is accomplished through the construction of dynamic, highly charged pores at the centre of each capsid multimer. The clustering of charges required for dNTP import is strongly destabilising and it is proposed that HIV uses the metabolite IP6 to coordinate the pore during assembly. Here we have investigated the role of inositol phosphates in coordinating a ring of positively charged lysine residues (K25) that forms at the base of the capsid pore. We show that whilst IP5, which can functionally replace IP6, engages an arginine ring (R18) at the top of the pore, the lysine ring simultaneously binds a second IP5 molecule. Dose dependent removal of K25 from the pore severely inhibits HIV infection and concomitantly prevents DNA synthesis. Cryo-tomography reveals that K25A virions have a severe assembly defect that inhibits the formation of mature capsid cones. Monitoring both the kinetics and morphology of capsids assembled in vitro reveals that while mutation K25A can still form tubes, the ability of IP6 to drive assembly of capsid cones has been lost. Finally, in single molecule TIRF microscopy experiments, capsid lattices in permeabilised K25 mutant virions are rapidly lost and cannot be stabilised by IP6. These results suggest that the coordination of IP6 by a second charged ring in mature hexamers drives the assembly of conical capsids capable of reverse transcription and infection.


Assuntos
Capsídeo/metabolismo , HIV-1/fisiologia , Lisina/metabolismo , Ácido Fítico/metabolismo , Montagem de Vírus/fisiologia , Linhagem Celular , DNA Viral/biossíntese , HIV-1/genética , HIV-1/metabolismo , Humanos , Microscopia de Fluorescência , Nucleotídeos/metabolismo
10.
Elife ; 92020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32553106

RESUMO

The type one interferon induced restriction factor Myxovirus resistance B (MxB) restricts HIV-1 nuclear entry evidenced by inhibition of 2-LTR but not linear forms of viral DNA. The HIV-1 capsid is the key determinant of MxB sensitivity and cofactor binding defective HIV-1 capsid mutants P90A (defective for cyclophilin A and Nup358 recruitment) and N74D (defective for CPSF6 recruitment) have reduced dependency on nuclear transport associated cofactors, altered integration targeting preferences and are not restricted by MxB expression. This has suggested that nuclear import mechanism may determine MxB sensitivity. Here we have use genetics to separate HIV-1 nuclear import cofactor dependence from MxB sensitivity. We provide evidence that MxB sensitivity depends on HIV-1 capsid conformation, rather than cofactor recruitment. We show that depleting CPSF6 to change nuclear import pathway does not impact MxB sensitivity, but mutants that recapitulate the effect of Cyclophilin A binding on capsid conformation and dynamics strongly impact MxB sensitivity. We demonstrate that HIV-1 primary isolates have different MxB sensitivities due to cytotoxic T lymphocyte (CTL) selected differences in Gag sequence but similar cofactor dependencies. Overall our work demonstrates a complex relationship between cyclophilin dependence and MxB sensitivity likely driven by CTL escape. We propose that cyclophilin binding provides conformational flexibility to HIV-1 capsid facilitating simultaneous evasion of capsid-targeting restriction factors including TRIM5 as well as MxB.


Assuntos
Capsídeo/química , HIV-1/fisiologia , Proteínas de Resistência a Myxovirus/química , Transporte Ativo do Núcleo Celular , HIV-1/química , Humanos
11.
Langmuir ; 36(13): 3624-3632, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32212624

RESUMO

The human immunodeficiency virus (HIV) capsid is a cone-shaped capsule formed from the viral capsid protein (CA), which is arranged into a lattice of hexamers and pentamers. The capsid comprises multiple binding interfaces for the recruitment of host proteins and macromolecules used by the virus to establish infection. Here, we coassembled CA proteins engineered for pentamer cross-linking and fluorescence labeling, into spherical particles. The CA spheres, which resemble the pentamer-rich structure of the end caps of the native HIV capsid, were immobilized onto surfaces as biorecognition elements for fluorescence microscopy-based quantification of host protein binding. The capsid-binding host protein cyclophilin A (CypA) is bound to CA spheres with the same affinity as CA tubes but at a higher CypA/CA stoichiometry, suggesting that the level of recruitment of CypA to the HIV capsid is dependent on curvature.


Assuntos
Capsídeo , Infecções por HIV , HIV-1 , Proteínas do Capsídeo , Ciclofilina A , Humanos
12.
ACS Appl Mater Interfaces ; 11(38): 34586-34594, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31483592

RESUMO

The human immunodeficiency virus 1 (HIV-1) capsid serves as a binding platform for proteins and small molecules from the host cell that regulate various steps in the virus life cycle. However, there are currently no quantitative methods that use assembled capsid lattices to measure host-pathogen interaction dynamics. Here we developed a single-molecule fluorescence biosensor using self-assembled capsid tubes as biorecognition elements and imaged capsid binders using total internal reflection fluorescence microscopy in a microfluidic setup. The method is highly sensitive in its ability to observe and quantify binding, to obtain dissociation constants, and to extract kinetics with an extended application of using more complex analytes that can accelerate characterization of novel capsid binders.


Assuntos
Técnicas Biossensoriais , Capsídeo , HIV-1 , Dispositivos Lab-On-A-Chip , Capsídeo/química , Capsídeo/metabolismo , HIV-1/química , HIV-1/metabolismo , Humanos , Microscopia de Fluorescência
13.
Annu Rev Virol ; 5(1): 209-225, 2018 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-30052493

RESUMO

Human immunodeficiency virus (HIV) is one of the most studied of all human pathogens. One strain-HIV-1 group M-is responsible for a global pandemic that has infected >60 million people and killed >20 million. Understanding the stages of HIV infection has led to highly effective therapeutics in the form of antiviral drugs that target the viral enzymes reverse transcriptase, integrase, and protease as well as biotechnological developments in the form of retroviral and lentiviral vectors for the transduction of cells in tissue culture and, potentially, gene therapy. However, despite considerable research focus in this area, there is much we still do not understand about the HIV replicative cycle, particularly the first steps that are crucial to establishing a productive infection. One especially enigmatic player has been the HIV capsid. In this review, we discuss three aspects of the HIV capsid: its function as a structural shell, its role in mediating host interactions, and its vulnerability to antiviral activity.


Assuntos
Antivirais/farmacologia , Capsídeo/efeitos dos fármacos , Capsídeo/fisiologia , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Humanos
14.
Elife ; 72018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29877795

RESUMO

Uncoating of the metastable HIV-1 capsid is a tightly regulated disassembly process required for release of the viral cDNA prior to nuclear import. To understand the intrinsic capsid disassembly pathway and how it can be modulated, we have developed a single-particle fluorescence microscopy method to follow the real-time uncoating kinetics of authentic HIV capsids in vitro immediately after permeabilizing the viral membrane. Opening of the first defect in the lattice is the rate-limiting step of uncoating, which is followed by rapid, catastrophic collapse. The capsid-binding inhibitor PF74 accelerates capsid opening but stabilizes the remaining lattice. In contrast, binding of a polyanion to a conserved arginine cluster in the lattice strongly delays initiation of uncoating but does not prevent subsequent lattice disassembly. Our observations suggest that different stages of uncoating can be controlled independently with the interplay between different capsid-binding regulators likely to determine the overall uncoating kinetics.


Assuntos
Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , HIV-1/metabolismo , Vírion/metabolismo , Capsídeo/efeitos dos fármacos , Proteínas do Capsídeo/genética , Ciclofilina A/genética , Ciclofilina A/metabolismo , Células HEK293 , HIV-1/efeitos dos fármacos , HIV-1/genética , Células HeLa , Humanos , Indóis/farmacologia , Cinética , Microscopia de Fluorescência/métodos , Fenilalanina/análogos & derivados , Fenilalanina/farmacologia , Ligação Proteica , Transcrição Reversa/efeitos dos fármacos , Imagem com Lapso de Tempo/métodos , Vírion/genética
15.
Elife ; 72018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29848441

RESUMO

The HIV capsid is semipermeable and covered in electropositive pores that are essential for viral DNA synthesis and infection. Here, we show that these pores bind the abundant cellular polyanion IP6, transforming viral stability from minutes to hours and allowing newly synthesised DNA to accumulate inside the capsid. An arginine ring within the pore coordinates IP6, which strengthens capsid hexamers by almost 10°C. Single molecule measurements demonstrate that this renders native HIV capsids highly stable and protected from spontaneous collapse. Moreover, encapsidated reverse transcription assays reveal that, once stabilised by IP6, the accumulation of new viral DNA inside the capsid increases >100 fold. Remarkably, isotopic labelling of inositol in virus-producing cells reveals that HIV selectively packages over 300 IP6 molecules per infectious virion. We propose that HIV recruits IP6 to regulate capsid stability and uncoating, analogous to picornavirus pocket factors. HIV-1/IP6/capsid/co-factor/reverse transcription.


Assuntos
Capsídeo/metabolismo , DNA Viral/biossíntese , HIV-1/metabolismo , Polímeros/metabolismo , Trifosfato de Adenosina/metabolismo , Capsídeo/ultraestrutura , Células HEK293 , HIV-1/ultraestrutura , Humanos , Nucleotídeos/metabolismo , Polieletrólitos , Inibidores da Transcriptase Reversa/farmacologia , Transcrição Reversa/efeitos dos fármacos , Transcrição Reversa/genética , Subtilisina/metabolismo , Vírion/efeitos dos fármacos , Vírion/metabolismo , Montagem de Vírus/efeitos dos fármacos
16.
Acta Crystallogr D Struct Biol ; 73(Pt 9): 710-728, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28876235

RESUMO

In 2012, preliminary guidelines were published addressing sample quality, data acquisition and reduction, presentation of scattering data and validation, and modelling for biomolecular small-angle scattering (SAS) experiments. Biomolecular SAS has since continued to grow and authors have increasingly adopted the preliminary guidelines. In parallel, integrative/hybrid determination of biomolecular structures is a rapidly growing field that is expanding the scope of structural biology. For SAS to contribute maximally to this field, it is essential to ensure open access to the information required for evaluation of the quality of SAS samples and data, as well as the validity of SAS-based structural models. To this end, the preliminary guidelines for data presentation in a publication are reviewed and updated, and the deposition of data and associated models in a public archive is recommended. These guidelines and recommendations have been prepared in consultation with the members of the International Union of Crystallography (IUCr) Small-Angle Scattering and Journals Commissions, the Worldwide Protein Data Bank (wwPDB) Small-Angle Scattering Validation Task Force and additional experts in the field.


Assuntos
DNA/química , Políticas Editoriais , Proteínas/química , RNA/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Animais , Bases de Dados de Proteínas , Humanos , Modelos Moleculares
17.
Sci Rep ; 7(1): 4579, 2017 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-28676648

RESUMO

LIM-Homeodomain (LIM-HD) transcription factors are highly conserved in animals where they are thought to act in a transcriptional 'LIM code' that specifies cell types, particularly in the central nervous system. In chick and mammals the interaction between two LIM-HD proteins, LHX3 and Islet1 (ISL1), is essential for the development of motor neurons. Using yeast two-hybrid analysis we showed that the Caenorhabditis elegans orthologs of LHX3 and ISL1, CEH-14 and LIM-7 can physically interact. Structural characterisation of a complex comprising the LIM domains from CEH-14 and a LIM-interaction domain from LIM-7 showed that these nematode proteins assemble to form a structure that closely resembles that of their vertebrate counterparts. However, mutagenic analysis across the interface indicates some differences in the mechanisms of binding. We also demonstrate, using fluorescent reporter constructs, that the two C. elegans proteins are co-expressed in a small subset of neurons. These data show that the propensity for LHX3 and Islet proteins to interact is conserved from C. elegans to mammals, raising the possibility that orthologous cell specific LIM-HD-containing transcription factor complexes play similar roles in the development of neuronal cells across diverse species.


Assuntos
Caenorhabditis elegans/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Fatores de Transcrição/metabolismo , Processamento Alternativo , Animais , Sítios de Ligação , Caenorhabditis elegans/genética , Sequência Conservada , Evolução Molecular , Regulação da Expressão Gênica , Proteínas com Homeodomínio LIM/química , Proteínas com Homeodomínio LIM/genética , Modelos Moleculares , Família Multigênica , Complexos Multiproteicos , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Soluções , Fatores de Transcrição/química , Fatores de Transcrição/genética
18.
Nature ; 536(7616): 349-53, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27509857

RESUMO

During the early stages of infection, the HIV-1 capsid protects viral components from cytosolic sensors and nucleases such as cGAS and TREX, respectively, while allowing access to nucleotides for efficient reverse transcription. Here we show that each capsid hexamer has a size-selective pore bound by a ring of six arginine residues and a 'molecular iris' formed by the amino-terminal ß-hairpin. The arginine ring creates a strongly positively charged channel that recruits the four nucleotides with on-rates that approach diffusion limits. Progressive removal of pore arginines results in a dose-dependent and concomitant decrease in nucleotide affinity, reverse transcription and infectivity. This positively charged channel is universally conserved in lentiviral capsids despite the fact that it is strongly destabilizing without nucleotides to counteract charge repulsion. We also describe a channel inhibitor, hexacarboxybenzene, which competes for nucleotide binding and efficiently blocks encapsidated reverse transcription, demonstrating the tractability of the pore as a novel drug target.


Assuntos
Capsídeo/metabolismo , Replicação do DNA , DNA Viral/biossíntese , HIV-1/metabolismo , Nucleotídeos/metabolismo , Arginina/metabolismo , Benzoatos/farmacologia , Ligação Competitiva/efeitos dos fármacos , Transporte Biológico Ativo/efeitos dos fármacos , Capsídeo/química , Capsídeo/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Difusão , Células HEK293 , HIV-1/efeitos dos fármacos , HIV-1/genética , HIV-1/crescimento & desenvolvimento , Células HeLa , Humanos , Cinética , Modelos Moleculares , Porosidade/efeitos dos fármacos , Transcrição Reversa/efeitos dos fármacos
19.
Protein Sci ; 24(10): 1649-59, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26234528

RESUMO

The transcription factor GATA1 helps regulate the expression of thousands of genes involved in blood development, by binding to single or double GATA sites on DNA. An important part of gene activation is chromatin looping, the bringing together of DNA elements that lie up to many thousands of basepairs apart in the genome. It was recently suggested, based on studies of the closely related protein GATA3, that GATA-mediated looping may involve interactions of each of two zinc fingers (ZF) with distantly spaced DNA elements. Here we present a structure of the GATA1 ZF region bound to pseudopalindromic double GATA site DNA, which is structurally equivalent to a recently-solved GATA3-DNA complex. However, extensive analysis of GATA1-DNA binding indicates that although the N-terminal ZF (NF) can modulate GATA1-DNA binding, under physiological conditions the NF binds DNA so poorly that it cannot play a direct role in DNA-looping. Rather, the ability of the NF to stabilize transcriptional complexes through protein-protein interactions, and thereby recruit looping factors such as Ldb1, provides a more compelling model for GATA-mediated looping.


Assuntos
DNA/metabolismo , Fator de Transcrição GATA1/metabolismo , Sequência de Bases , Sítios de Ligação , Cristalografia por Raios X , DNA/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Fator de Transcrição GATA1/química , Proteínas com Domínio LIM/química , Proteínas com Domínio LIM/metabolismo , Modelos Biológicos , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
20.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 6): 1295-306, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26057669

RESUMO

Staphylococcus aureus is a common and serious cause of infection in humans. The bacterium expresses a cell-surface receptor that binds to, and strips haem from, human haemoglobin (Hb). The binding interface has previously been identified; however, the structural changes that promote haem release from haemoglobin were unknown. Here, the structure of the receptor-Hb complex is reported at 2.6 Å resolution, which reveals a conformational change in the α-globin F helix that disrupts the haem-pocket structure and alters the Hb quaternary interactions. These features suggest potential mechanisms by which the S. aureus Hb receptor induces haem release from Hb.


Assuntos
Antígenos de Bactérias/química , Hemoglobinas/química , Receptores de Superfície Celular/química , Staphylococcus aureus/química , alfa-Globinas/química , Modelos Moleculares , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...