Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Res ; 9(3): 291-308, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33355229

RESUMO

ONCR-177 is an engineered recombinant oncolytic herpes simplex virus (HSV) with complementary safety mechanisms, including tissue-specific miRNA attenuation and mutant UL37 to inhibit replication, neuropathic activity, and latency in normal cells. ONCR-177 is armed with five transgenes for IL12, FLT3LG (extracellular domain), CCL4, and antagonists to immune checkpoints PD-1 and CTLA-4. In vitro assays demonstrated that targeted miRNAs could efficiently suppress ONCR-177 replication and transgene expression, as could the HSV-1 standard-of-care therapy acyclovir. Although ONCR-177 was oncolytic across a panel of human cancer cell lines, including in the presence of type I IFN, replication was suppressed in human pluripotent stem cell-derived neurons, cardiomyocytes, and hepatocytes. Dendritic cells activated with ONCR-177 tumor lysates efficiently stimulated tumor antigen-specific CD8+ T-cell responses. In vivo, biodistribution analyses suggested that viral copy number and transgene expression peaked approximately 24 to 72 hours after injection and remained primarily within the injected tumor. Intratumoral administration of ONCR-177 mouse surrogate virus, mONCR-171, was efficacious across a panel of syngeneic bilateral mouse tumor models, resulting in partial or complete tumor regressions that translated into significant survival benefits and to the elicitation of a protective memory response. Antitumor effects correlated with local and distant intratumoral infiltration of several immune effector cell types, consistent with the proposed functions of the transgenes. The addition of systemic anti-PD-1 augmented the efficacy of mONCR-171, particularly for abscopal tumors. Based in part upon these preclinical results, ONCR-177 is being evaluated in patients with metastatic cancer (ONCR-177-101, NCT04348916).


Assuntos
Herpesvirus Humano 1/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/terapia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/imunologia , Animais , Linhagem Celular Tumoral/transplante , Terapia Combinada/métodos , Modelos Animais de Doenças , Feminino , Herpesvirus Humano 1/genética , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Injeções Intralesionais , Camundongos , MicroRNAs/genética , MicroRNAs/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Vírus Oncolíticos/genética , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Distribuição Tecidual , Transgenes/genética , Transgenes/imunologia , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/imunologia , Replicação Viral/genética
2.
Mol Ther Oncolytics ; 18: 476-490, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32953982

RESUMO

Development of next-generation oncolytic viruses requires the design of vectors that are potently oncolytic, immunogenic in human tumors, and well tolerated in patients. Starting with a joint-region deleted herpes simplex virus 1 (HSV-1) to create large transgene capability, we retained a single copy of the ICP34.5 gene, introduced mutations in UL37 to inhibit retrograde axonal transport, and inserted cell-type-specific microRNA (miRNA) target cassettes in HSV-1 genes essential for replication or neurovirulence. Ten miRNA candidates highly expressed in normal tissues and with low or absent expression in malignancies were selected from a comprehensive profile of 800 miRNAs with an emphasis on protection of the nervous system. Among the genes essential for viral replication identified using a small interfering RNA (siRNA) screen, we selected ICP4, ICP27, and UL8 for miRNA attenuation where a single miRNA is sufficient to potently attenuate viral replication. Additionally, a neuron-specific miRNA target cassette was introduced to control ICP34.5 expression. This vector is resistant to type I interferon compared to ICP34.5-deleted oncolytic HSVs, and in cancer cell lines, the oncolytic activity of the modified vector is equivalent to its parental virus. In vivo, this vector potently inhibits tumor growth while being well tolerated, even at high intravenous doses, compared to parental wild-type HSV-1.

4.
Indian J Palliat Care ; 23(1): 100-103, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28216871

RESUMO

Assessment and management of complex cancer pain always remains a major challenge for any palliative care team, given its heterogeneity of underlying pathophysiology and limitations of any pharmacotherapy. Here, we present a case of complex pain management in a young patient with a life-limiting illness, highlighting the issues of organic and nonorganic contributors of pain and provide some insight into the role of ketamine and methadone as adjunctive therapy to opioid analgesics. A brief literature review is also done to provide the context of use of these adjunctive drugs in this setting.

5.
Anal Biochem ; 351(2): 241-53, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16510109

RESUMO

A method was developed to rapidly identify high-affinity human antibodies from phage display library selection outputs. It combines high-throughput Fab fragment expression and purification with surface plasmon resonance (SPR) microarrays to determine kinetic constants (kon and koff) for 96 different Fab fragments in a single experiment. Fabs against human tissue kallikrein 1 (hK1, KLK1 gene product) were discovered by phage display, expressed in Escherichia coli in batches of 96, and purified using protein A PhyTip columns. Kinetic constants were obtained for 191 unique anti-hK1 Fabs using the Flexchip SPR microarray device. The highest affinity Fabs discovered had dissociation constants of less than 1 nM. The described SPR method was also used to categorize Fabs according to their ability to recognize an apparent active site epitope. The ability to rapidly determine the affinities of hundreds of antibodies significantly accelerates the discovery of high-affinity antibody leads.


Assuntos
Ressonância de Plasmônio de Superfície/métodos , Calicreínas Teciduais/imunologia , Automação , Sítios de Ligação , Sítios de Ligação de Anticorpos , Ensaio de Imunoadsorção Enzimática/métodos , Epitopos/análise , Humanos , Fragmentos Fab das Imunoglobulinas/isolamento & purificação , Concentração Inibidora 50 , Cinética , Biblioteca de Peptídeos , Análise Serial de Proteínas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...