Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(12): 15596-15604, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38500411

RESUMO

In this study, we show a direct correlation between the applied mechanical strain and an increase in monolayer MoS2 photoresponsivity. This shows that tensile strain can improve the efficiency of monolayer MoS2 photodetectors. The observed high photocurrent and extended response time in our devices are indicative that devices are predominantly governed by photogating mechanisms, which become more prominent with applied tensile strain. Furthermore, we have demonstrated that a nonencapsulated MoS2 monolayer can be used in strain-based devices for many cycles and extensive periods of time, showing endurance under ambient conditions without loss of functionality. Such robustness emphasizes the potential of MoS2 for further functionalization and utilization of different flexible sensors.

2.
ACS Appl Mater Interfaces ; 14(18): 21727-21737, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35500044

RESUMO

A major challenge in the investigation of all 2D materials is the development of synthesis protocols and tools which would enable their large-scale production and effective manipulation. The same holds for borophene, where experiments are still largely limited to in situ characterizations of small-area samples. In contrast, our work is based on millimeter-sized borophene sheets, synthesized on an Ir(111) surface in ultrahigh vacuum. Besides high-quality macroscopic synthesis, as confirmed by low-energy electron diffraction (LEED) and atomic force microscopy (AFM), we also demonstrate a successful transfer of borophene from Ir to a Si wafer via electrochemical delamination process. Comparative Raman spectroscopy, in combination with the density functional theory (DFT) calculations, proved that borophene's crystal structure has been preserved in the transfer. Our results demonstrate successful growth and manipulation of large-scale, single-layer borophene sheets with minor defects and ambient stability, thus expediting borophene implementation into more complex systems and devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA