Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Phys J C Part Fields ; 82(2): 120, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35210937

RESUMO

A finite axion-nucleon coupling, nearly unavoidable for QCD axions, leads to the production of axions via the thermal excitation and subsequent de-excitation of 57 Fe isotopes in the sun. We revise the solar bound on this flux adopting the up to date emission rate, and investigate the sensitivity of the proposed International Axion Observatory IAXO and its intermediate stage BabyIAXO to detect these axions. We compare different realistic experimental options and discuss the model dependence of the signal. Already BabyIAXO has sensitivity far beyond previous solar axion searches via the nucleon coupling and IAXO can improve on this by more than an order of magnitude.

2.
Rep Prog Phys ; 79(12): 124201, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27775925

RESUMO

This paper describes the physics case for a new fixed target facility at CERN SPS. The SHiP (search for hidden particles) experiment is intended to hunt for new physics in the largely unexplored domain of very weakly interacting particles with masses below the Fermi scale, inaccessible to the LHC experiments, and to study tau neutrino physics. The same proton beam setup can be used later to look for decays of tau-leptons with lepton flavour number non-conservation, [Formula: see text] and to search for weakly-interacting sub-GeV dark matter candidates. We discuss the evidence for physics beyond the standard model and describe interactions between new particles and four different portals-scalars, vectors, fermions or axion-like particles. We discuss motivations for different models, manifesting themselves via these interactions, and how they can be probed with the SHiP experiment and present several case studies. The prospects to search for relatively light SUSY and composite particles at SHiP are also discussed. We demonstrate that the SHiP experiment has a unique potential to discover new physics and can directly probe a number of solutions of beyond the standard model puzzles, such as neutrino masses, baryon asymmetry of the Universe, dark matter, and inflation.

3.
Phys Rev Lett ; 103(8): 080402, 2009 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-19792696

RESUMO

Minicharged particles arise in many extensions of the standard model. Their contribution to the vacuum polarization modifies Coulomb's law via the Uehling potential. In this Letter, we argue that tests for electromagnetic fifth forces can therefore be a sensitive probe of minicharged particles. In the low mass range < or approximately equal to microeV existing constraints from Cavendish type experiments provide the best model-independent bounds on minicharged particles.

4.
Phys Rev Lett ; 101(13): 131801, 2008 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-18851438

RESUMO

If there is a light Abelian gauge boson gamma' in the hidden sector its kinetic mixing with the photon can produce a hidden cosmic microwave background (HCMB). For meV masses, resonant oscillations gamma<-->gamma' happen after big bang nucleosynthesis (BBN) but before CMB decoupling, increasing the effective number of neutrinos Nnu(eff) and the baryon to photon ratio, and distorting the CMB blackbody spectrum. The agreement between BBN and CMB data provides new constraints. However, including Lyman-alpha data, Nnu(eff) > 3 is preferred. It is tempting to attribute this effect to the HCMB. The interesting parameter range will be tested in upcoming laboratory experiments.

5.
Phys Rev Lett ; 97(14): 140402, 2006 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-17155223

RESUMO

Possible extensions of the standard model of particle physics suggest the existence of particles with small, unquantized electric charge. Photon-initiated pair production of millicharged fermions in a magnetic field would manifest itself as a vacuum magnetic (VM) dichroism. We show that laser polarization experiments searching for this effect yield, in the mass range below 0.1 eV, much stronger constraints on millicharged fermions than previous laboratory searches. VM birefringence due to virtual pair production gives a slightly better constraint for masses between 0.1 and a few eV. We comment on the possibility that the VM dichroism observed by PVLAS arises from pair production of such millicharged fermions rather than from single production of axionlike particles. Such a scenario can be confirmed or firmly excluded by a search for invisible decays of orthopositronium with a branching-fraction sensitivity of about 10(-9).

6.
Phys Rev Lett ; 93(11): 110405, 2004 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-15447325

RESUMO

We investigate textbook QED in the framework of the exact renormalization group. In the strong-coupling region, we study the influence of fluctuation-induced photonic and fermionic self-interactions on the nonperturbative running of the gauge coupling. Our findings confirm the triviality hypothesis of complete charge screening if the ultraviolet cutoff is sent to infinity. Though the Landau pole does not belong to the physical coupling domain owing to spontaneous chiral-symmetry-breaking (chiSB), the theory predicts a scale of maximal UV extension of the same order as the Landau pole scale. In addition, we verify that the chiSB phase of the theory which is characterized by a light fermion and a Goldstone boson also has a trivial Yukawa coupling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...