Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Leukoc Biol ; 102(3): 941-948, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28637896

RESUMO

Migration of B cells supports their development and recruitment into functional niches. Therefore, defining factors that control B cell migration will lead to a better understanding of adaptive immunity. In vitro cell migration assays with B cells have been limited by poor adhesion of cells to glass coated with adhesion molecules. We have developed a technique using monolayers of endothelial cells as the substrate for B cell migration and used this technique to establish a robust in vitro assay for B cell migration. We use TNF-α to up-regulate surface expression of the adhesion molecule VCAM-1 on endothelial cells. The ligand VLA-4 is expressed on B cells, allowing them to interact with the endothelial monolayer and migrate on its surface. We tested our new method by examining the role of L-plastin (LPL), an F-actin-bundling protein, in B cell migration. LPL-deficient (LPL-/-) B cells displayed decreased speed and increased arrest coefficient compared with wild-type (WT) B cells, following chemokine stimulation. However, the confinement ratios for WT and LPL-/- B cells were similar. Thus, we demonstrate how the use of endothelial monolayers as a substrate will support future interrogation of molecular pathways essential to B cell migration.


Assuntos
Linfócitos B/imunologia , Movimento Celular/imunologia , Células Endoteliais/imunologia , Integrina alfa4beta1/imunologia , Fosfoproteínas/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Linfócitos B/citologia , Movimento Celular/genética , Técnicas de Cocultura/métodos , Proteínas do Citoesqueleto , Células Endoteliais/citologia , Integrina alfa4beta1/genética , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos , Fosfoproteínas/genética , Fator de Necrose Tumoral alfa/genética
2.
J Immunol ; 197(5): 1683-91, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27465533

RESUMO

Exploring the mechanisms controlling lymphocyte trafficking is essential for understanding the function of the immune system and the pathophysiology of immunodeficiencies. The mammalian Ste20-like kinase 1 (Mst1) has been identified as a critical signaling mediator of T cell migration, and loss of Mst1 results in immunodeficiency disease. Although Mst1 is known to support T cell migration through induction of cell polarization and lamellipodial formation, the downstream effectors of Mst1 are incompletely defined. Mice deficient for the actin-bundling protein L-plastin (LPL) have phenotypes similar to mice lacking Mst1, including decreased T cell polarization, lamellipodial formation, and cell migration. We therefore asked whether LPL functions downstream of Mst1. The regulatory N-terminal domain of LPL contains a consensus Mst1 phosphorylation site at Thr(89) We found that Mst1 can phosphorylate LPL in vitro and that Mst1 can interact with LPL in cells. Removal of the Mst1 phosphorylation site by mutating Thr(89) to Ala impaired localization of LPL to the actin-rich lamellipodia of T cells. Expression of the T89A LPL mutant failed to restore migration of LPL-deficient T cells in vitro. Furthermore, expression of T89A LPL in LPL-deficient hematopoietic cells, using bone marrow chimeras, failed to rescue the phenotype of decreased thymic egress. These results identify LPL as a key effector of Mst1 and establish a novel mechanism linking a signaling intermediate to an actin-binding protein critical to T cell migration.


Assuntos
Movimento Celular , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Linfócitos T/imunologia , Animais , Proteínas do Citoesqueleto , Citometria de Fluxo , Ativação Linfocitária , Linfócitos/imunologia , Camundongos , Proteínas dos Microfilamentos , Fosfoproteínas/deficiência , Fosfoproteínas/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Pseudópodes/imunologia , Pseudópodes/fisiologia
3.
PLoS One ; 9(8): e105561, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25133611

RESUMO

Chemokines promote T cell migration by transmitting signals that induce T cell polarization and integrin activation and adhesion. Mst1 kinase is a key signal mediator required for both of these processes; however, its molecular mechanism remains unclear. Here, we present a mouse model in which Mst1 function is disrupted by a hypomorphic mutation. Microscopic analysis of Mst1-deficient CD4 T cells revealed a necessary role for Mst1 in controlling the localization and activity of Myosin IIa, a molecular motor that moves along actin filaments. Using affinity specific LFA-1 antibodies, we identified a requirement for Myosin IIa-dependent contraction in the precise spatial distribution of low and higher affinity LFA-1 on the membrane of migrating T cells. Mst1 deficiency or Myosin inhibition resulted in multipolar cells, difficulties in uropod detachment and mis-localization of low affinity LFA-1. Thus, Mst1 regulates Myosin IIa dynamics to organize high and low affinity LFA-1 to the anterior and posterior membrane during T cell migration.


Assuntos
Fator de Crescimento de Hepatócito/imunologia , Integrinas/imunologia , Miosina não Muscular Tipo IIA/imunologia , Proteínas Proto-Oncogênicas/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia , Animais , Movimento Celular , Células Cultivadas , Quimiocina CCL19/imunologia , Fator de Crescimento de Hepatócito/genética , Antígeno-1 Associado à Função Linfocitária/imunologia , Camundongos Endogâmicos C57BL , Mutação , Proteínas Proto-Oncogênicas/genética , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...