Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Heliyon ; 9(3): e13766, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36851970

RESUMO

Background: The bidirectional brain-machine interfaces algorithms are machines that decode neural response in order to control the external device and encode position of artificial limb to proper electrical stimulation, so that the interface between brain and machine closes. Most BMI researchers typically consider four basic elements: recording technology to extract brain activity, decoding algorithm to translate brain activity to the predicted movement of the external device, external device (prosthetic limb such as a robotic arm), and encoding interface to convert the motion of the external machine to set of the electrical stimulation of the brain. New method: In this paper, we develop a novel approach for bidirectional brain-machine interface (BMI). First, we propose a neural network model for sensory cortex (S1) connected to the neural network model of motor cortex (M1) considering the topographic mapping between S1 and M1. We use 4-box model in S1 and 4-box in M1 so that each box contains 500 neurons. Individual boxes include inhibitory and excitatory neurons and synapses. Next, we develop a new BMI algorithm based on neural activity. The main concept of this BMI algorithm is to close the loop between brain and mechaical external device. Results: The sensory interface as encoding algorithm convert the location of the external device (artificial limb) into the electrical stimulation which excite the S1 model. The motor interface as decoding algorithm convert neural recordings from the M1 model into a force which causes the movement of the external device. We present the simulation results for the on line BMI which means that there is a real time information exchange between 9 boxes and 4 boxes of S1-M1 network model and the external device. Also, off line information exchange between brain of five anesthetized rats and externnal device was performed. The proposed BMI algorithm has succeeded in controlling the movement of the mechanical arm towards the target area on simulation and experimental data, so that the BMI algorithm shows acceptable WTPE and the average number of iterations of the algorithm in reaching artificial limb to the target region.Comparison with existing methods and Conclusions: In order to confirm the simulation results the 9-box model of S1-M1 network was developed and the valid "spike train" algorithm, which has good results on real data, is used to compare the performance accuracy of the proposed BMI algorithm versus "spike train" algorithm on simulation and off line experimental data of anesthetized rats. Quantitative and qualitative results confirm the proper performance of the proposed algorithm compared to algorithm "spike train" on simulations and experimental data.

2.
Ergonomics ; 66(7): 939-953, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36039393

RESUMO

This study assessed the effects of movement-based interventions on the complexity of postural changes during prolonged standing. Twenty participants, equally distributed in gender and standing work experience (SWE), completed three simulated prolonged standing sessions: without movement (control), leg exercise and footrest. The amount and complexity of variability in the centre of pressure (COP) and lumbar curvature angle were quantified using linear and nonlinear tools. Lower leg swelling and back/leg discomfort were also monitored. Participants in the SWE group showed significantly greater postural complexity during the standing. Regular leg exercise resulted in significantly higher postural complexity and lower leg discomfort and swelling. The footrest led to significant changes in amount of COP variability. Both interventions significantly reduced back discomfort. Overall, the nonlinear analysis of postural changes provided different findings compared to linear ones, considering the standing time, interventions and standing job experience. Nonlinear results were consistent with leg discomfort and swelling.Practitioner summary: The effect of movement-based interventions on dynamics of postural alterations over prolonged standing were characterised using nonlinear techniques. The effect of standing work experience was also considered. Previous experience of standing jobs and leg movements increase the complexity of postural behaviour over standing period.


Assuntos
Movimento , Posição Ortostática , Humanos , Extremidade Inferior , Edema , Exercício Físico , Equilíbrio Postural
3.
Sci Rep ; 12(1): 19436, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376426

RESUMO

Artificial intelligence computing adapted from biology is a suitable platform for the development of intelligent machines by imitating the functional mechanisms of the nervous system in creating high-level activities such as learning, decision making and cognition in today's systems. Here, the concentration is on improvement the cognitive potential of artificial intelligence network with a bio-inspired structure. In this regard, four spiking pattern recognition platforms for recognizing digits and letters of EMNIST, patterns of YALE, and ORL datasets are proposed. All networks are developed based on a similar structure in the input image coding, model of neurons (pyramidal neurons and interneurons) and synapses (excitatory AMPA and inhibitory GABA currents), and learning procedure. Networks 1-4 are trained on Digits, Letters, faces of YALE and ORL, respectively, with the proposed un-supervised, spatial-temporal, and sparse spike-based learning mechanism based on the biological observation of the brain learning. When the networks have reached the highest recognition accuracy in the relevant patterns, the main goal of the article, which is to achieve high-performance pattern recognition system with higher cognitive ability, is followed. The pattern recognition network that is able to detect the combination of multiple patterns which called intertwined patterns has not been discussed yet. Therefore, by integrating four trained spiking pattern recognition platforms in one system configuration, we are able to recognize intertwined patterns. These results are presented for the first time and could be the pioneer of a new generation of pattern recognition networks with a significant ability in smart machines.


Assuntos
Inteligência Artificial , Redes Neurais de Computação , Potenciais de Ação/fisiologia , Algoritmos , Reconhecimento Automatizado de Padrão/métodos
4.
J Med Signals Sens ; 12(3): 202-218, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36120402

RESUMO

Background: Due to imprecise/missing data used for parameterization of ordinary differential equations (ODEs), model parameters are uncertain. Uncertainty of parameters has hindered the application of ODEs that require accurate parameters. Methods: We extended an available ODE model of tumor-immune system interactions via fuzzy logic to illustrate the fuzzification procedure of an ODE model. The fuzzy ODE (FODE) model assigns a fuzzy number to the parameters, to capture parametric uncertainty. We used the FODE model to predict tumor and immune cell dynamics and to assess the efficacy of 5-fluorouracil (5-FU) chemotherapy. Result: FODE model investigates how parametric uncertainty affects the uncertainty band of cell dynamics in the presence and absence of 5-FU treatment. In silico experiments revealed that the frequent 5-FU injection created a beneficial tumor microenvironment that exerted detrimental effects on tumor cells by enhancing the infiltration of CD8+ T cells, and natural killer cells, and decreasing that of myeloid-derived suppressor cells. The global sensitivity analysis was proved model robustness against random perturbation to parameters. Conclusion: ODE models with fuzzy uncertain kinetic parameters cope with insufficient/imprecise experimental data in the field of mathematical oncology and can predict cell dynamics uncertainty band.

5.
PLoS One ; 17(7): e0270757, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35776772

RESUMO

Cortico-muscular interactions play important role in sensorimotor control during motor task and are commonly studied by cortico-muscular coherence (CMC) method using joint electroencephalogram-surface electromyogram (EEG-sEMG) signals. As noise and time delay between the two signals weaken the CMC value, coupling difference between non-task sEMG channels is often undetectable. We used sparse representation of EEG channels to compute CMC and detect coupling for task-related and non-task sEMG signals. High-density joint EEG-sEMG (53 EEG channels, 4 sEMG bipolar channels) signals were acquired from 15 subjects (30.26 ± 4.96 years) during four specific hand and foot contraction tasks (2 dynamic and 2 static contraction). Sparse representations method was applied to detect projection of EEG signals on each sEMG channel. Bayesian optimization was employed to select best-fitted method with tuned hyperparameters on the input feeding data while using 80% data as the train set and 20% as test set. K-fold (K = 5) cross-validation method was used for evaluation of trained model. Two models were trained separately, one for CMC data and the other from sparse representation of EEG channels on each sEMG channel. Sensitivity, specificity, and accuracy criteria were obtained for test dataset to evaluate the performance of task-related and non-task sEMG channels detection. Coupling values were significantly different between grand average of task-related compared to the non-task sEMG channels (Z = -6.33, p< 0.001, task-related median = 2.011, non-task median = 0.112). Strong coupling index was found even in single trial analysis. Sparse representation approach (best fitted model: SVM, Accuracy = 88.12%, Sensitivity = 83.85%, Specificity = 92.45%) outperformed CMC method (best fitted model: KNN, Accuracy = 50.83%, Sensitivity = 52.17%, Specificity = 49.47%). Sparse representation approach offers high performance to detect CMC for discerning the EMG channels involved in the contraction tasks and non-tasks.


Assuntos
Algoritmos , Eletroencefalografia , Teorema de Bayes , Encéfalo , Eletroencefalografia/métodos , Eletromiografia/métodos , Humanos
6.
Iran J Allergy Asthma Immunol ; 21(2): 151-166, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35490269

RESUMO

This study is designed to present an agent-based model (ABM) to simulate the interactions between tumor cells and the immune system in the melanoma model. The Myeloid-derived Suppressor Cells (MDSCs) and dendritic cells (DCs) are considered in this model as immunosuppressive and antigen-presenting agents respectively. The animal experiment was performed on 68 B16F10 melanoma tumor-bearing C57BL/6 female mice to collect dynamic data for ABM implementation and validation. Animals were divided into 4 groups; group 1 was control (no treatment) while groups 2 and 3 were treated with DC vaccine and low-dose 5- fluorouracil (5-FU) respectively and group 4 was treated with both DC Vaccine and low-dose of 5-FU. The tumor growth rate, number of MDSC, and presence of CD8+/CD107a+ T cells in the tumor microenvironment were evaluated in each group. Firstly, the tumor cells, the effector immune cells, DCs, and the MDSCs have been considered as the agents of the ABM model and their interaction methods have been extracted from the literature and implemented in the model. Then, the model parameters were estimated by the dynamic data collected from animal experiments.  To validate the ABM model, the simulation results were compared with the real data. The results show that the dynamics of the model agents can mimic the relations among considered immune system components to an emergent outcome compatible with real data. The simplicity of the proposed model can help to understand the results of the combinational therapy and make this model a useful tool for studying different scenarios and assessing the combinational results. Determining the role of each component helps to find critical times during tumor progression and change the tumor and immune system balance in favor of the immune system.


Assuntos
Melanoma , Animais , Linfócitos T CD8-Positivos , Células Dendríticas , Feminino , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sistemas , Microambiente Tumoral
7.
J Biomed Phys Eng ; 12(2): 189-204, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35433515

RESUMO

Background: Due to the increased prevalence of diabetes and the irreparable complications of this disease, it is important to measure and monitor the blood glucose levels of diabetic patients. The only way to treat type 1 diabetes is monitoring insulin, and in this type of diabetes, insulin should be injected into the body in order to reduce the patient's blood glucose as prescribed by the physician at certain times. In addition, the only way to treat type 2 diabetes is through diet and exercise daily. Objective: We aim to use an ordinary differential equation model with two-delays to control the rate of changes in blood glucose levels throughout the day, based on the amount of food that the person consumes. Material and Methods: In this analytical study, we extended an ODE model which is parameterized by data collected in this study to capture dynamics of glucose and insulin. We used global sensitivity analysis method to assess model robustness with respect to parameter perturbations. Results: Our results have shown that utilizing the dynamics of changes in blood glucose levels throughout the day can be used to prevent hypoglycemia and hyperglycemic in the diabetic patients. Conclusion: Dynamic modeling can help us to prevent hypoglycemia and hyperglycemia in the diabetic patients.

8.
Appl Ergon ; 101: 103699, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35114511

RESUMO

Overhead work is an important risk factor associated with musculoskeletal disorders of the neck and shoulder region. This study aimed to propose and evaluate a passive head/neck supporting exoskeleton (HNSE) as a potential ergonomic intervention for overhead work applications. Fourteen male participants were asked to perform a simulated overhead task of fastening/unfastening nut in 4 randomized sessions, characterized by two variables: neck extension angle (40% and 80% of neck maximum range of motion) and exoskeleton condition (wearing and not wearing the HNSE). Using the HNSE, significantly alleviated perceived discomfort in the neck (p-value = 0.009), right shoulder (p-value = 0.05) and left shoulder (p-value = 0.02) and reduced electromyographic activity of the right (p-value = 0.005) and left (p-value = 0.01) sternocleidomastoid muscles. However, utilizing the exoskeleton caused a remarkable increase in right (p-value = 0.04) and left (p-value = 0.05) trapezius electromyographic activities. Performance was not significantly affected by the HNSE. Although the HNSE had promising effects with respect to discomfort and muscular activity in the static overhead task, future work is still needed to investigate its effect on performance and to provide support for the generalizability of study results.


Assuntos
Exoesqueleto Energizado , Fenômenos Biomecânicos , Eletromiografia , Ergonomia/métodos , Humanos , Masculino , Pescoço , Amplitude de Movimento Articular , Ombro/fisiologia
9.
BMC Cancer ; 21(1): 1226, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34781899

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease with rising incidence and with 5-years overall survival of less than 8%. PDAC creates an immune-suppressive tumor microenvironment to escape immune-mediated eradication. Regulatory T (Treg) cells and myeloid-derived suppressor cells (MDSC) are critical components of the immune-suppressive tumor microenvironment. Shifting from tumor escape or tolerance to elimination is the major challenge in the treatment of PDAC. RESULTS: In a mathematical model, we combine distinct treatment modalities for PDAC, including 5-FU chemotherapy and anti- CD25 immunotherapy to improve clinical outcome and therapeutic efficacy. To address and optimize 5-FU and anti- CD25 treatment (to suppress MDSCs and Tregs, respectively) schedule in-silico and simultaneously unravel the processes driving therapeutic responses, we designed an in vivo calibrated mathematical model of tumor-immune system (TIS) interactions. We designed a user-friendly graphical user interface (GUI) unit which is configurable for treatment timings to implement an in-silico clinical trial to test different timings of both 5-FU and anti- CD25 therapies. By optimizing combination regimens, we improved treatment efficacy. In-silico assessment of 5-FU and anti- CD25 combination therapy for PDAC significantly showed better treatment outcomes when compared to 5-FU and anti- CD25 therapies separately. Due to imprecise, missing, or incomplete experimental data, the kinetic parameters of the TIS model are uncertain that this can be captured by the fuzzy theorem. We have predicted the uncertainty band of cell/cytokines dynamics based on the parametric uncertainty, and we have shown the effect of the treatments on the displacement of the uncertainty band of the cells/cytokines. We performed global sensitivity analysis methods to identify the most influential kinetic parameters and simulate the effect of the perturbation on kinetic parameters on the dynamics of cells/cytokines. CONCLUSION: Our findings outline a rational approach to therapy optimization with meaningful consequences for how we effectively design treatment schedules (timing) to maximize their success, and how we treat PDAC with combined 5-FU and anti- CD25 therapies. Our data revealed that a synergistic combinatorial regimen targeting the Tregs and MDSCs in both crisp and fuzzy settings of model parameters can lead to tumor eradication.


Assuntos
Carcinoma Ductal Pancreático/terapia , Fluoruracila/uso terapêutico , Imunoterapia/métodos , Subunidade alfa de Receptor de Interleucina-2/imunologia , Modelos Teóricos , Neoplasias Pancreáticas/terapia , Animais , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Lógica Fuzzy , Humanos , Tolerância Imunológica , Imunidade Celular , Células Matadoras Naturais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Células Supressoras Mieloides/efeitos dos fármacos , Transplante de Neoplasias , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Linfócitos T Citotóxicos/citologia , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Reguladores/efeitos dos fármacos , Resultado do Tratamento , Evasão Tumoral , Microambiente Tumoral/imunologia , Interface Usuário-Computador
10.
J Biomed Phys Eng ; 11(3): 325-336, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34189121

RESUMO

BACKGROUND: Interactions of many key proteins or genes in signalling pathway have been studied qualitatively in the literature, but only little quantitative information is available. OBJECTIVE: Although much has been done to clarify the biochemistry of transcriptional dynamics in signalling pathway, it remains difficult to find out and predict quantitative responses. The aim of this study is to construct a computational model of epidermal growth factor receptor (EGFR) signalling pathway as one of hallmarks of cancer so as to predict quantitative responses. MATERIAL AND METHODS: In this analytical study, we presented a computational model to investigate EGFR signalling pathway. Interaction of Arsenic trioxide (ATO) with EGFR signalling pathway factors has been elicited by systematic search in data bases, as ATO is one of the mysterious chemotherapy agents that control EGFR expression in cancer. ATO has dichotomous manner in vivo, dependent on its concentration. According to fuzzy rules based upon qualitative knowledge and Petri Net, we can construct a quantitative model to describe ATO mechanism in EGFR signalling pathway. RESULTS: By Fuzzy Logic models that have the potential to trade with the loss of quantitative information on how different species interact, along with Petri net quantitatively describe the dynamics of EGFR signalling pathway. By this model the dynamic of different factors in EGFR signalling pathway is achieved. CONCLUSION: The use of Fuzzy Logic and PNs in biological network modelling causes a deeper understanding and comprehensive analysis of the biological networks.

11.
Appl Ergon ; 96: 103489, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34098408

RESUMO

PURPOSE: Nonlinear analysis techniques provide a powerful approach to explore dynamics of posture-related time-varying signals. The aim of this study was to investigate the fundamental interactions between postural variability structure and discomfort development during prolonged standing. METHODS: Twenty participants, with equal distribution for gender and standing work experience (SWE), completed a simulated long-term standing test. Low back and legs discomfort, center of pressure, lumbar curvature, and EMG activity of trunk and leg muscles were monitored. Nonlinear measures including largest lyapunov exponent, multi-scale entropy, and detrended fluctuation analysis were applied to characterize the variability structure (i.e., complexity) in each signal. The size (i.e., amount) of variability was also computed using traditional linear metrics. RESULTS: With progress of low back and legs discomfort over standing periods, significant lower levels were perceived by the participants having SWE. The amount of variability in all signals (except external oblique EMG activity) were significantly increased with the time progress for all participants. The structure of variability in most signals demonstrated a lower complexity (more regularity) with fractal properties that deviated from 1/f noise. The SWE group showed a higher complexity levels. CONCLUSIONS: Overall, the findings verified variations in structure and amount of the postural variability. However, nonlinear analysis identified postural strategies according to the perceived discomfort in a different way. These results provide supports for future application of nonlinear tools in evaluating standing tasks and related ergonomics interventions as it allows further insight into how discomfort development impact the structure of postural changes.


Assuntos
Postura , Posição Ortostática , Entropia , Ergonomia , Humanos , Equilíbrio Postural , Tronco
12.
Front Neurosci ; 14: 534619, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33328841

RESUMO

Visual evoked potentials (VEPs) to periodic stimuli are commonly used in brain computer interfaces for their favorable properties such as high target identification accuracy, less training time, and low surrounding target interference. Conventional periodic stimuli can lead to subjective visual fatigue due to continuous and high contrast stimulation. In this study, we compared quasi-periodic and chaotic complex stimuli to common periodic stimuli for use with VEP-based brain computer interfaces (BCIs). Canonical correlation analysis (CCA) and coherence methods were used to evaluate the performance of the three stimulus groups. Subjective fatigue caused by the presented stimuli was evaluated by the Visual Analogue Scale (VAS). Using CCA with the M2 template approach, target identification accuracy was highest for the chaotic stimuli (M = 86.8, SE = 1.8) compared to the quasi-periodic (M = 78.1, SE = 2.6, p = 0.008) and periodic (M = 64.3, SE = 1.9, p = 0.0001) stimulus groups. The evaluation of fatigue rates revealed that the chaotic stimuli caused less fatigue compared to the quasi-periodic (p = 0.001) and periodic (p = 0.0001) stimulus groups. In addition, the quasi-periodic stimuli led to lower fatigue rates compared to the periodic stimuli (p = 0.011). We conclude that the target identification results were better for the chaotic group compared to the other two stimulus groups with CCA. In addition, the chaotic stimuli led to a less subjective visual fatigue compared to the periodic and quasi-periodic stimuli and can be suitable for designing new comfortable VEP-based BCIs.

13.
J Med Signals Sens ; 10(2): 94-104, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32676445

RESUMO

BACKGROUND: How to explore the dynamics of transition probabilities between phases of budding yeast cell cycle (BYCC) network based on the dynamics of protein activities that control this network? How to identify the robust structure of protein interactions of BYCC Boolean network (BN)? Budding yeast allows scientists to put experiments into effect in order to discover the intracellular cell cycle regulating structures which are well simulated by mathematical modeling. METHODS: We extended an available deterministic BN of proteins responsible for the cell cycle to a Markov chain model containing apoptosis besides G1, S, G2, M, and stationary G1. Using genetic algorithm (GA), we estimated the kinetic parameters of the extended BN model so that the subsequent transition probabilities derived using Markov chain model of cell states as normal cell cycle becomes the maximum while the structure of chemical interactions of extended BN of cell cycle becomes more stable. RESULTS: Using kinetic parameters optimized by GA, the probability of the subsequent transitions between cell cycle phases is maximized. The relative basin size of stationary G1 increased from 86% to 96.48% while the number of attractors decreased from 7 in the original model to 5 in the extended one. Hence, an increase in the robustness of the system has been achieved. CONCLUSION: The structure of interacting proteins in cell cycle network affects its robustness and probabilities of transitions between different cell cycle phases. Markov chain and BN are good approaches to study the stability and dynamics of the cell cycle network.

14.
Cogn Neurodyn ; 13(6): 519-530, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31741689

RESUMO

Methamphetamine (meth) is potently addictive and is closely linked to high crime rates in the world. Since meth withdrawal is very painful and difficult, most abusers relapse to abuse in traditional treatments. Therefore, developing accurate data-driven methods based on brain functional connectivity could be helpful in classifying and characterizing the neural features of meth dependence to optimize the treatments. Accordingly, in this study, computation of functional connectivity using resting-state EEG was used to classify meth dependence. Firstly, brain functional connectivity networks (FCNs) of 36 meth dependent individuals and 24 normal controls were constructed by weighted phase lag index, in six frequency bands: delta (1-4 Hz), theta (4-8 Hz), alpha (8-15 Hz), beta (15-30 Hz), gamma (30-45 Hz) and wideband (1-45 Hz).Then, significant differences in graph metrics and connectivity values of the FCNs were used to distinguish the two groups. Support vector machine classifier had the best performance with 93% accuracy, 100% sensitivity, 83% specificity and 0.94 F-score for differentiating between MDIs and NCs. The best performance yielded when selected features were the combination of connectivity values and graph metrics in the beta frequency band.

15.
J Med Signals Sens ; 9(1): 15-23, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30967986

RESUMO

BACKGROUND: To predict the behavior of biological systems, mathematical models of biological systems have been shown to be useful. In particular, mathematical models of tumor-immune system interactions have demonstrated promising results in prediction of different behaviors of tumor against the immune system. METHODS: This study aimed at the introduction of a new model of tumor-immune system interaction, which includes tumor and immune cells as well as myeloid-derived suppressor cells (MDSCs). MDSCs are immune suppressor cells that help the tumor cells to escape the immune system. The structure of this model is agent-based which makes possible to investigate each component as a separate agent. Moreover, in this model, the effect of low dose 5-fluorouracil (5-FU) on MDSCs depletion was considered. RESULTS: Based on the findings of this study, MDSCs had suppressive effect on increment of immune cell number which consequently result in tumor cells escape the immune cells. It has also been demonstrated that low-dose 5-FU could help immune system eliminate the tumor cells through MDSCs depletion. CONCLUSION: Using this new agent-based model, multiple injection of low-dose 5-FU could eliminate MDSCs and therefore might have the potential to be considered in treatment of cancers.

16.
PLoS One ; 14(3): e0213197, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30840671

RESUMO

Code modulated Visual Evoked Potentials (c-VEP) based BCI studies usually employ m-sequences as a modulating codes for their broadband spectrum and correlation property. However, subjective fatigue of the presented codes has been a problem. In this study, we introduce chaotic codes containing broadband spectrum and similar correlation property. We examined whether the introduced chaotic codes could be decoded from EEG signals and also compared the subjective fatigue level with m-sequence codes in normal subjects. We generated chaotic code from one-dimensional logistic map and used it with conventional 31-bit m-sequence code. In a c-VEP based study in normal subjects (n = 44, 21 females) we presented these codes visually and recorded EEG signals from the corresponding codes for their four lagged versions. Canonical correlation analysis (CCA) and spatiotemporal beamforming (STB) methods were used for target identification and comparison of responses. Additionally, we compared the subjective self-declared fatigue using VAS caused by presented m-sequence and chaotic codes. The introduced chaotic code was decoded from EEG responses with CCA and STB methods. The maximum total accuracy values of 93.6 ± 11.9% and 94 ± 14.4% were achieved with STB method for chaotic and m-sequence codes for all subjects respectively. The achieved accuracies in all subjects were not significantly different in m-sequence and chaotic codes. There was significant reduction in subjective fatigue caused by chaotic codes compared to the m-sequence codes. Both m-sequence and chaotic codes were similar in their accuracies as evaluated by CCA and STB methods. The chaotic codes significantly reduced subjective fatigue compared to the m-sequence codes.


Assuntos
Potenciais Evocados Visuais/fisiologia , Fadiga/patologia , Adulto , Algoritmos , Encéfalo/fisiologia , Eletroencefalografia , Feminino , Humanos , Masculino , Estimulação Luminosa , Adulto Jovem
17.
Eur J Radiol ; 101: 170-177, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29571793

RESUMO

PURPOSE: This study investigated the potentiality of ultrasound imaging to classify hot and cold thyroid nodules on the basis of textural and morphological analysis. METHODS: In this research, 42 hypo (hot) and 42 hyper-function (cold) thyroid nodules were evaluated through the proposed method of computer aided diagnosis (CAD) system. To discover the difference between hot and cold nodules, 49 sonographic features (9 morphological, 40 textural) were extracted. A support vector machine classifier was utilized for the classification of LNs based on their extracted features. RESULTS: In the training set data, a combination of morphological and textural features represented the best performance with area under the receiver operating characteristic curve (AUC) of 0.992. Upon testing the data set, the proposed model could classify the hot and cold thyroid nodules with an AUC of 0.948. CONCLUSIONS: CAD method based on textural and morphological features is capable of distinguishing between hot from cold nodules via 2-Dimensional sonography. Therefore, it can be used as a supplementary technique in daily clinical practices to improve the radiologists' understanding of conventional ultrasound imaging for nodules characterization.


Assuntos
Nódulo da Glândula Tireoide/diagnóstico por imagem , Nódulo da Glândula Tireoide/fisiopatologia , Ultrassonografia/métodos , Diagnóstico por Computador/métodos , Diagnóstico Diferencial , Feminino , Humanos , Pessoa de Meia-Idade , Curva ROC , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Glândula Tireoide/diagnóstico por imagem , Glândula Tireoide/fisiopatologia
18.
Australas Phys Eng Sci Med ; 41(1): 13-20, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29143909

RESUMO

Biosignals are considered as important sources of data for diagnosing and detecting abnormalities, and modeling dynamics in the body. These signals are usually analyzed using features taken from time and frequency domain. In theory' these dynamics can also be analyzed utilizing Poincaré plane that intersects system's trajectory. However' selecting an appropriate Poincaré plane is a crucial part of extracting best Poincaré samples. There is no unique way to choose a Poincaré plane' because it is highly dependent to the system dynamics. In this study, a new algorithm is introduced that automatically selects an optimum Poincaré plane able to transfer maximum information from EEG time series to a set of Poincaré samples. In this algorithm' EEG time series are first embedded; then a parametric Poincaré plane is designed and finally the parameters of the plane are optimized using genetic algorithm. The presented algorithm is tested on EEG signals and the optimum Poincaré plane is obtained with more than 99% data information transferred. Results are compared with some typical method of creating Poinare samples and showed that the transferred information using with this method is higher. The generated samples can be used for feature extraction and further analysis.


Assuntos
Algoritmos , Eletroencefalografia , Processamento de Sinais Assistido por Computador , Humanos , Fatores de Tempo
19.
Basic Clin Neurosci ; 8(5): 371-385, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29167724

RESUMO

INTRODUCTION: Graph theoretical analysis of functional Magnetic Resonance Imaging (fMRI) data has provided new measures of mapping human brain in vivo. Of all methods to measure the functional connectivity between regions, Linear Correlation (LC) calculation of activity time series of the brain regions as a linear measure is considered the most ubiquitous one. The strength of the dependence obligatory for graph construction and analysis is consistently underestimated by LC, because not all the bivariate distributions, but only the marginals are Gaussian. In a number of studies, Mutual Information (MI) has been employed, as a similarity measure between each two time series of the brain regions, a pure nonlinear measure. Owing to the complex fractal organization of the brain indicating self-similarity, more information on the brain can be revealed by fMRI Fractal Dimension (FD) analysis. METHODS: In the present paper, Box-Counting Fractal Dimension (BCFD) is introduced for graph theoretical analysis of fMRI data in 17 methamphetamine drug users and 18 normal controls. Then, BCFD performance was evaluated compared to those of LC and MI methods. Moreover, the global topological graph properties of the brain networks inclusive of global efficiency, clustering coefficient and characteristic path length in addict subjects were investigated too. RESULTS: Compared to normal subjects by using statistical tests (P<0.05), topological graph properties were postulated to be disrupted significantly during the resting-state fMRI. CONCLUSION: Based on the results, analyzing the graph topological properties (representing the brain networks) based on BCFD is a more reliable method than LC and MI.

20.
Basic Clin Neurosci ; 8(4): 285-298, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29158879

RESUMO

INTRODUCTION: Various treatment methods for drug abusers will result in different success rates. This is partly due to different neural assumptions and partly due to various rate of relapse in abusers because of different circumstances. Investigating the brain activation networks of treated subjects can reveal the hidden mechanisms of the therapeutic methods. METHODS: We studied three groups of subjects: heroin abusers treated with abstinent based therapy (ABT) method, heroin abusers treated with Methadone Maintenance Therapy (MMT) method, and a control group. They were all scanned with functional magnetic resonance imaging (fMRI), using a 6-block task, where each block consisted of the rest-craving-rest-neutral sequence. Using the dynamic causal modeling (DCM) algorithm, brain effective connectivity network (caused by the drug craving stimulation) was quantified for all groups. In this regard, 4 brain areas were selected for this analysis based on previous findings: ventromedial prefrontal cortex (VMPFC), dorsolateral prefrontal cortex (DLPFC), amygdala, and ventral striatum. RESULTS: Our results indicated that the control subjects did not show significant brain activations after craving stimulations, but the two other groups showed significant brain activations in all 4 regions. In addition, VMPFC showed higher activations in the ABT group compared to the MMT group. The effective connectivity network suggested that the control subjects did not have any direct input from drug-related cue indices, while the other two groups showed reactions to these cues. Also, VMPFC displayed an important role in ABT group. In encountering the craving pictures, MMT subjects manifest a very simple mechanism compared to other groups. CONCLUSION: This study revealed an activation network similar to the emotional and inhibitory control networks observed in drug abusers in previous works. The results of DCM analysis also support the regulatory role of frontal regions on bottom regions. Furthermore, this study demonstrates the different effective connectivity patterns after drug abuse treatment and in this way helps the experts in the field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...