Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 8: 1516, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28919904

RESUMO

Sorghum is increasingly used as a biomass crop worldwide. Its genetic diversity provides a large range of stem biochemical composition suitable for various end-uses as bioenergy or forage. Its drought tolerance enables it to reasonably sustain biomass production under water limited conditions. However, drought effect on the accumulation of sorghum stem biomass remains poorly understood which limits progress in crop improvement and management. This study aimed at identifying the morphological, biochemical and histological traits underlying biomass accumulation in the sorghum stem and its plasticity in response to water deficit. Two hybrids (G1, G4) different in stem biochemical composition (G4, more lignified, less sweet) were evaluated during 2 years in the field in Southern France, under two water treatments differentiated during stem elongation (irrigated; 1 month dry-down until an average soil water deficit of -8.85 bars). Plant phenology was observed weekly. At the end of the water treatment and at final harvest, plant height, stem and leaf dry-weight and the size, biochemical composition and tissue histology of internodes at 2-4 positions along the stem were measured. Stem biomass accumulation was significantly reduced by drought (in average 42% at the end of the dry-down). This was due to the reduction of the length, but not diameter, of the internodes expanded during water deficit. These internodes had more soluble sugar but lower lignin and cellulose contents. This was associated with a decrease of the areal proportion of lignified cell wall in internode outer zone whereas the areal proportion of this zone was not affected. All internodes for a given genotype and environment followed a common histochemical dynamics. Hemicellulose content and the areal proportion of inner vs. outer internode tissues were set up early during internode growth and were not drought responsive. G4 exhibited a higher drought sensitivity than G1 for plant height only. At final harvest, the stem dry weight was only 18% lower in water deficit (re-watered) compared to well-watered treatment and internodes growing during re-watering were similar to those on the well-watered plants. These results are being valorized to refine the phenotyping of sorghum diversity panels and breeding populations.

2.
Ann Bot ; 95(3): 401-12, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15601682

RESUMO

BACKGROUND AND AIMS: Tillering is an essential factor when estimating yield, but investigations rarely include both the temporal and spatial changes that occur in tillers. This study analyses the morphology and development dynamics of each tiller, based on its topological location, the timing of appearance and main stem development stage. METHODS: An indica cultivar of rice, 'Ir64', glasshouse-grown (25/20 degrees C, 12 h photoperiod), was used to examine the emergence, phenology and morphology of each axis starting at the third leaf stage up to heading. KEY RESULTS: Little variability was observed in the structural and morphological characteristics of the tillers, and the rice population appeared to be hierarchical. Blade length initially increased with leaf rank and then decreased sharply for the last three leaves. The number of phytomers per axis decreased with branching order and rank. An analysis of plant dynamics showed synchronous emergence of the leaves on the main stem and on the tillers up to flowering. Axillary bud development into tillers depended on their topological location and plant developmental stage. CONCLUSIONS: The timing and frequency of flowering tillers complied with rules of priority depending on their order, rank and emergence time. Precise description of plant topology in grasses is a useful tool that can be used to quantify growth events and predict tillering in terms of location, structure and fate according to growing conditions.


Assuntos
Oryza/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Caules de Planta/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Modelos Biológicos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA