Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(47): 29487-29494, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33148806

RESUMO

We report paleomagnetic data showing that an intraoceanic Trans-Tethyan subduction zone existed south of the Eurasian continent and north of the Indian subcontinent until at least Paleocene time. This system was active between 66 and 62 Ma at a paleolatitude of 8.1 ± 5.6 °N, placing it 600-2,300 km south of the contemporaneous Eurasian margin. The first ophiolite obductions onto the northern Indian margin also occurred at this time, demonstrating that collision was a multistage process involving at least two subduction systems. Collisional events began with collision of India and the Trans-Tethyan subduction zone in Late Cretaceous to Early Paleocene time, followed by the collision of India (plus Trans-Tethyan ophiolites) with Eurasia in mid-Eocene time. These data constrain the total postcollisional convergence across the India-Eurasia convergent zone to 1,350-2,150 km and limit the north-south extent of northwestern Greater India to <900 km. These results have broad implications for how collisional processes may affect plate reconfigurations, global climate, and biodiversity.

2.
Science ; 364(6436): 181-184, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30872536

RESUMO

On multimillion-year time scales, Earth has experienced warm ice-free and cold glacial climates, but it is unknown whether transitions between these background climate states were the result of changes in carbon dioxide sources or sinks. Low-latitude arc-continent collisions are hypothesized to drive cooling by exhuming and eroding mafic and ultramafic rocks in the warm, wet tropics, thereby increasing Earth's potential to sequester carbon through chemical weathering. To better constrain global weatherability through time, the paleogeographic position of all major Phanerozoic arc-continent collisions was reconstructed and compared to the latitudinal distribution of ice sheets. This analysis reveals a strong correlation between the extent of glaciation and arc-continent collisions in the tropics. Earth's climate state is set primarily by global weatherability, which changes with the latitudinal distribution of arc-continent collisions.

3.
Proc Natl Acad Sci U S A ; 113(18): 4935-40, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27091966

RESUMO

New constraints on the tectonic evolution of the Neo-Tethys Ocean indicate that at ∼90-70 Ma and at ∼50-40 Ma, vast quantities of mafic and ultramafic rocks were emplaced at low latitude onto continental crust within the tropical humid belt. These emplacement events correspond temporally with, and are potential agents for, the global climatic cooling events that terminated the Cretaceous Thermal Maximum and the Early Eocene Climatic Optimum. We model the temporal effects of CO2 drawdown from the atmosphere due to chemical weathering of these obducted ophiolites, and of CO2 addition to the atmosphere from arc volcanism in the Neo-Tethys, between 100 and 40 Ma. Modeled variations in net CO2-drawdown rates are in excellent agreement with contemporaneous variation of ocean bottom water temperatures over this time interval, indicating that ophiolite emplacement may have played a major role in changing global climate. We demonstrate that both the lithology of the obducted rocks (mafic/ultramafic) and a tropical humid climate with high precipitation rate are needed to produce significant consumption of CO2 Based on these results, we suggest that the low-latitude closure of ocean basins along east-west trending plate boundaries may also have initiated other long-term global cooling events, such as Middle to Late Ordovician cooling and glaciation associated with the closure of the Iapetus Ocean.

4.
Nature ; 504(7478): 131-4, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24305163

RESUMO

A long-standing theory for the genesis of continental crust is that it is formed in subduction zones. However, the observed seismic properties of lower crust and upper mantle in oceanic island arcs differ significantly from those in the continental crust. Accordingly, significant modifications of lower arc crust must occur, if continental crust is indeed formed from island arcs. Here we investigate how the seismic characteristics of arc crust are transformed into those of the continental crust by calculating the density and seismic structure of two exposed sections of island arc (Kohistan and Talkeetna). The Kohistan crustal section is negatively buoyant with respect to the underlying depleted upper mantle at depths exceeding 40 kilometres and is characterized by a steady increase in seismic velocity similar to that observed in active arcs. In contrast, the lower Talkeetna crust is density sorted, preserving only relicts (about ten to a hundred metres thick) of rock with density exceeding that of the underlying mantle. Specifically, the foundering of the lower Talkeetna crust resulted in the replacement of dense mafic and ultramafic cumulates by residual upper mantle, producing a sharp seismic discontinuity at depths of around 38 to 42 kilometres, characteristic of the continental Mohorovicic discontinuity (the Moho). Dynamic calculations indicate that foundering is an episodic process that occurs in most arcs with a periodicity of half a million to five million years. Moreover, because foundering will continue after arc magmatism ceases, this process ultimately results in the formation of the continental Moho.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA