Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Drug Target ; : 1-42, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39246202

RESUMO

Skin cancer poses a significant global health concern necessitating innovative treatment approaches. This review explores the potential of vesicle nanoformulation incorporating EA (edge activators) to overcome barriers in skin cancer management. The skin's inherent protective mechanisms, specifically the outermost layer called the stratum corneum and the network of blood arteries, impede the permeation of drugs. Phospholipid-enriched EA based nanoformulation offer a promising solution by enhancing drug penetration through skin barriers. EAs like Span 80, Span 20, Tween 20, and sodium cholate etc., enhance vesicles deformability, influencing drug permeation. This review discusses topical application of drugs treat skin cancer, highlighting challenges connected with the conventional liposome and the significance of using EA-based nanoformulation in overcoming these challenges. Furthermore, it provides insights into various EA characteristics, critical insights, clinical trials, and patents. The review also offers a concise overview of composition, preparation techniques, and the application of EA-based nanoformulation such as transfersomes, transliposomes, transethosomes, and transniosomes for delivering drugs to treat skin cancer. Overall, this review intends to accelerate the development of formulations that incorporate EA, which would further improve topical drug delivery and enhance therapeutic outcomes in skin cancer treatment.

2.
Iran J Basic Med Sci ; 27(10): 1228-1242, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39229578

RESUMO

Natural herbs have garnered significant research recently as their components target multiple disease signaling pathways, making them highly potential for various disease prevention and treatment. Embelin, a naturally occurring benzoquinone isolated from Embelia ribes, has shown promising biological activities such as antitumor, antidiabetic, anti-oxidant, and antimicrobial. Various mechanisms have been reported, including monitoring genes that synchronize the cell cycle, up-regulating multiple anti-oxidant enzymes, suppressing genes that prevent cell death, influencing transcription factors, and preventing inflammatory biomarkers. However, the hydrophobic nature of embelin leads to poor absorption and limits its therapeutic potential. This review highlights a wide range of nanocarriers used as delivery systems for embelin, including polymeric nanoparticles, liposomes, nanostructured lipid carriers, micelles, nanoemulsion, and metallic nanoparticles. These embelin nanomedicine formulations have been developed in preclinical studies as a possible treatment for many disorders and characterized using various in vitro, ex vivo, and in vivo models.

3.
Gels ; 9(10)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37888364

RESUMO

In this study, hesperidin was loaded into a transethosome and was developed employing the rotary evaporator method. The formulation was optimized using the Box-Behnken design (BBD). The optimized HSD-TE formulation has a spherical shape, vesicle size, polydispersity index, entrapment efficiency, and zeta potential within the range of 178.98 nm; the PDI was 0.259 with a zeta potential of -31.14 mV and % EE of 89.51%, respectively. The in vitro drug release shows that HSD-TE exhibited the release of 81.124 ± 3.45% in comparison to HSD suspension. The ex vivo skin permeation showed a 2-fold increase in HSD-TE gel permeation. The antioxidant activity of HSD-TE was found to be 79.20 ± 1.77% higher than that of the HSD solution. The formulation showed 2-fold deeper HSD-TE penetration across excised rat skin membranes in confocal laser microscopy scanning, indicating promising in vivo prospects. In a dermatokinetic study, HSD-TE gel was compared to HSD conventional gel where TE significantly boosted HSD transport in the epidermis and dermal layers. The formulation showed greater efficacy than free HSD in the inhibition of microbial growth, as evidenced by antibacterial activity on the Gram-negative and positive bacteria. These investigations found that the HSD-TE formulation could enhance the topical application in the management of cutaneous bacterial infections.

4.
Expert Opin Drug Deliv ; 20(6): 739-755, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37038271

RESUMO

INTRODUCTION: Transdermal drug delivery is limited by the stratum corneum, inhibiting the therapeutic potential of the permeants. Microneedles (MNs) have opened new frontiers in transdermal drug delivery systems. These micro-sized needles offer painless and accentuated delivery of drugs even with high molecular weights. AREAS COVERED: The review embodies drug delivery strategies with MNs with a description of MN types and fabrication techniques using various materials. The application of MN is not limited to drug delivery, but it also encompasses in vaccine delivery, diagnosis, phlebotomy, and even in the cosmetic industry. The review also tabulates MN-based marketed formulations. In a nutshell, we aim to present a panoramic view of MNs, including the design, applications, and regulatory aspects of MN. EXPERT OPINION: With the availability of numerous materials at the disposal of pharmaceutical scientists; the MN-based drug delivery technology has offered significant interventions toward the management of chronic maladies, including cardiovascular disorders, diabetes, asthma, mental depression, etc. As happens with any new technology, there are concerns with MN also such as biocompatibility issues with the material used for the fabrication. Nevertheless, the pharmaceutical industry must strive for preparing harmless, efficient, and cost-effective MN-based delivery systems for wider acceptance and patient compliance.


Assuntos
Epiderme , Agulhas , Humanos , Microinjeções , Administração Cutânea , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos/métodos , Pele
5.
J Cosmet Dermatol ; 21(11): 5386-5404, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35699364

RESUMO

BACKGROUND: Vitiligo is a depigmenting illness that causes white areas on the skin. Vitiligo's pathogenetic genesis is based on the melanocyte's autoimmune destruction, in which oxidative stress causes melanocyte molecular, organelle, and exposure of antigen, as well as melanocyte cell death, and so plays a role in vitiligo progression. Natural compounds have recently shown a wide range of therapeutic bioactivities against a number of skin disorders. AIM: The aim of this work is drug delivery of natural products through nano-carriers for effective vitiligo therapy: A compendia review. METHODS & MATERIALS: An online literature analysis was guided for vitiligo therapy, nanotechnology, phytochemical composition, and, types of vitiligo, types of nanomedicine. Appropriate information were taken from different electronic scientific databases such as Web of Science, Science Direct, Elsevier, Google Scholar, Springer, PubMed, and scripts. RESULTS: Nano-carriers-based natural compounds provide a great relationship for the enhancement in the efficacy and safety of pharmacotherapeutic agents for the treatment of vitiligo. DISCUSSION: In this study focuses on natural compounds' effects and processes on vitiligo models. Although topical therapy plays an important role in vitiligo treatment, its utility and patient compliance are hampered by adverse effects or inadequate efficacy. Novel drug delivery techniques can help improve topical medication delivery by improving epidermal localization, reducing side effects, and increasing effectiveness. CONCLUSION: This paper covers the significant potential of herbal-derived active compounds as anti-vitiligo drugs, as well as new drug delivery as a viable carrier and future possibilities to investigate.


Assuntos
Produtos Biológicos , Vitiligo , Humanos , Produtos Biológicos/uso terapêutico , Vitiligo/tratamento farmacológico , Vitiligo/patologia , Melanócitos/metabolismo , Sistemas de Liberação de Medicamentos , Epiderme/patologia
6.
Gels ; 7(4)2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34842674

RESUMO

Medicinal plants have been used since ancient times for their various therapeutic activities and are safer compared to modern medicines, especially when properly identifying and preparing them and choosing an adequate dose administration. The phytochemical compounds present in plants are progressively yielding evidence in modern drug delivery systems by treating various diseases like cancers, coronary heart disease, diabetes, high blood pressure, inflammation, microbial, viral and parasitic infections, psychotic diseases, spasmodic conditions, ulcers, etc. The phytochemical requires a rational approach to deliver the compounds to enhance the efficacy and to improve patients' compatibility. Nanotechnology is emerging as one of the most promising strategies in disease control. Nano-formulations could target certain parts of the body and control drug release. Different studies report that phytochemical-loaded nano-formulations have been tested successfully both in vitro and in vivo for healing of skin wounds. The use of nano systems as drug carriers may reduce the toxicity and enhance the bioavailability of the incorporated drug. In this review, we focus on various nano-phytomedicines that have been used in treating skin burn wounds, and how both nanotechnology and phytochemicals are effective for treating skin burns.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA