Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cellulose (Lond) ; 27(5): 2803-2816, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32226243

RESUMO

Low consistency (LC) refining of (chemi-)thermomechanical pulp (TMP) provides an energy efficient alternative to high consistency refining for pulp property development. However, the benefit of LC refining is often limited by excessive fibre shortening, lower tear strength and a reduction of bulk caused by the refining process. In this study, microfibres produced by LC refining of TMP and kraft pulp fibres were investigated for their reinforcement potential in high freeness mechanical pulp. Primary pulp at 645 mL Canadian Standard Freeness was LC refined to different energy targets as a baseline for mechanical and optical property development. In contrast, the same primary pulp was reinforced with different microfibre types in ratios that yielded the same specific energies of the baseline LC refined pulp. The study revealed that at equivalent energies, the addition of TMP microfibres to the high freeness primary pulp displayed tensile development identical to the LC refined pulp, with significantly improved tear and bulk. The addition of kraft microfibre to primary pulp produced the highest tensile and tear strength but compromised light scattering. Additionally, all microfibre composites showed improved elongation, as opposed to no notable change in elongation with conventional LC refining. This investigation proposes an alternative, cost-effective approach for developing high bulk, high strength mechanical pulp by limiting the extent of second stage refining and using LC refined microfibres for pulp reinforcement. The high tear-high bulk open construction of the composite paper is likely to benefit boxboard and packaging applications.

2.
ASAIO J ; 63(2): 223-228, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27861431

RESUMO

Lung disease in children often results in pulmonary hypertension and right heart failure. The availability of a pediatric artificial lung (PAL) would open new approaches to the management of these conditions by bridging to recovery in acute disease or transplantation in chronic disease. This study investigates the efficacy of a novel PAL in alleviating an animal model of pulmonary hypertension and increased right ventricle afterload. Five juvenile lambs (20-30 kg) underwent PAL implantation in a pulmonary artery to left atrium configuration. Induction of disease involved temporary, reversible occlusion of the right main pulmonary artery. Hemodynamics, pulmonary vascular input impedance, and right ventricle efficiency were measured under 1) baseline, 2) disease, and 3) disease + PAL conditions. The disease model altered hemodynamics variables in a manner consistent with pulmonary hypertension. Subsequent PAL attachment improved pulmonary artery pressure (p = 0.018), cardiac output (p = 0.050), pulmonary vascular input impedance (Z.0 p = 0.028; Z.1 p = 0.058), and right ventricle efficiency (p = 0.001). The PAL averaged resistance of 2.3 ± 0.8 mm Hg/L/min and blood flow of 1.3 ± 0.6 L/min. This novel low-resistance PAL can alleviate pulmonary hypertension in an acute animal model and demonstrates potential for use as a bridge to lung recovery or transplantation in pediatric patients with significant pulmonary hypertension refractory to medical therapies.


Assuntos
Órgãos Artificiais , Modelos Animais de Doenças , Ventrículos do Coração/fisiopatologia , Hipertensão Pulmonar/terapia , Pulmão , Animais , Criança , Hemodinâmica , Humanos , Hipertensão Pulmonar/fisiopatologia , Pulmão/fisiopatologia , Masculino , Artéria Pulmonar , Ovinos
3.
Ann Thorac Surg ; 98(1): 97-102, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24856794

RESUMO

BACKGROUND: Centrifugal pumps are used increasingly for temporary mechanical support for the treatment of cardiogenic shock. However, centrifugal pumps can generate excessive negative pressure and are afterload sensitive. A previously developed modified roller pump mitigates these limitations both in vitro and in preliminary animal experiments. We report the results of intermediate-term testing of our evolving pump technology, known as the BioVAD. METHODS: The BioVAD was implanted in 6 adult male sheep (62.5±3.9 kg), with drainage from the left atrium and reinfusion into the descending aorta. The sheep were monitored for 5 days. Heparin was given during the initial implantation, but no additional anticoagulants were given. Data collected included hemodynamic status, pump flow and pressures, laboratory values to monitor end-organ function and hemolysis, pathologic specimens to evaluate for thromboembolic events and organ ischemia, and explanted pump evaluation results. RESULTS: All animals survived the planned experimental duration and there were no pump malfunctions. Mean BioVAD flow was 3.57±0.30 L/min (57.1 mL/kg/min) and mean inlet pressure was -30.51±4.25 mm Hg. Laboratory values, including plasma free hemoglobin, creatinine, lactate, and bilirubin levels, remained normal. Three animals had small renal cortical infarcts, but there were no additional thromboembolic events or other abnormalities seen on pathologic examination. No thrombus was identified in the BioVAD blood flow path. CONCLUSIONS: The BioVAD performed well for 5 days in this animal model of temporary left ventricular assistance. Its potential advantages over centrifugal pumps may make it applicable for short-term mechanical circulatory support.


Assuntos
Aorta Torácica/cirurgia , Circulação Extracorpórea/instrumentação , Coração Auxiliar , Hemodinâmica/fisiologia , Choque Cardiogênico/cirurgia , Animais , Modelos Animais de Doenças , Seguimentos , Masculino , Desenho de Prótese , Ovinos , Choque Cardiogênico/fisiopatologia , Fatores de Tempo
4.
ASAIO J ; 60(3): 322-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24625536

RESUMO

It has been suggested that pulsatile blood flow is superior to continuous flow (CF) in cardiopulmonary bypass (CPB). However, adoption of pulsatile flow (PF) technology has been limited because of practicality and complexity of creating a consistent physiologic pulse. A pediatric pulsatile rotary ventricular pump (PRVP) was designed to address this problem. We evaluated the PRVP in an animal model and determined its ability to generate PF during CPB. The PRVP (modified peristaltic pump, with tapering of the outlet of the pump chamber) was tested in four piglets (10-12 kg). Cannulation was performed with right atrial and aortic cannulae, and pressure sensors were inserted into the femoral arteries. Pressure curves were obtained at different levels of flow and compared with both the animal's baseline physiologic function and a CF roller pump. Pressure and flow waveforms demonstrated significant pulsatility in the PRVP setup compared with CF at all tested conditions. Measurement of hemodynamic energy data, including the percentage pulsatile energy and the surplus hydraulic energy, also revealed a significant increase in pulsatility with the PRVP (p < 0.001). The PRVP creates physiologically significant PF, similar to the pulsatility of a native heart, and has the potential to be easily implemented in pediatric CPB.


Assuntos
Ponte Cardiopulmonar/instrumentação , Ponte Cardiopulmonar/métodos , Fluxo Pulsátil/fisiologia , Animais , Aorta/patologia , Pressão Sanguínea , Procedimentos Cirúrgicos Cardíacos/métodos , Feminino , Hemodinâmica , Hemólise , Miocárdio/patologia , Perfusão , Desenho de Prótese , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...