Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 15(711): eadd9990, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37647386

RESUMO

Myeloid cells in the tumor microenvironment (TME) can exist in immunosuppressive and immunostimulatory states that impede or promote antitumor immunity, respectively. Blocking suppressive myeloid cells or increasing stimulatory cells to enhance antitumor immune responses is an area of interest for therapeutic intervention. Triggering receptor expressed on myeloid cells-1 (TREM1) is a proinflammatory receptor that amplifies immune responses. TREM1 is expressed on neutrophils, subsets of monocytes and tissue macrophages, and suppressive myeloid populations in the TME, including tumor-associated neutrophils, monocytes, and tumor-associated macrophages. Depletion or inhibition of immunosuppressive myeloid cells, or stimulation by TREM1-mediated inflammatory signaling, could be used to promote an immunostimulatory TME. We developed PY159, an afucosylated humanized anti-TREM1 monoclonal antibody with enhanced FcγR binding. PY159 is a TREM1 agonist that induces signaling, leading to up-regulation of costimulatory molecules on monocytes and macrophages, production of proinflammatory cytokines and chemokines, and enhancement of T cell activation in vitro. An antibody against mouse TREM1, PY159m, promoted antitumor efficacy in syngeneic mouse tumor models. These results suggest that PY159-mediated agonism of TREM1 on tumoral myeloid cells can promote a proinflammatory TME and offer a promising strategy for immunotherapy.


Assuntos
Monócitos , Células Mieloides , Animais , Camundongos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Modelos Animais de Doenças , Imunossupressores , Macrófagos , Receptor Gatilho 1 Expresso em Células Mieloides
2.
Cell Rep ; 37(3): 109844, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34686340

RESUMO

Converting checkpoint inhibitor (CPI)-resistant individuals to being responsive requires identifying suppressive mechanisms. We identify TREM2+ tumor-associated macrophages (TAMs) as being correlated with exhausted CD8+ tumor-infiltrating lymphocytes (TILs) in mouse syngeneic tumor models and human solid tumors of multiple histological types. Fc domain-enhanced anti-TREM2 monoclonal antibody (mAb) therapy promotes anti-tumor immunity by elimination and modulation of TAM populations, which leads to enhanced CD8+ TIL infiltration and effector function. TREM2+ TAMs are most enriched in individuals with ovarian cancer, where TREM2 expression corresponds to disease grade accompanied by worse recurrence-free survival. In an aggressive orthotopic ovarian cancer model, anti-TREM2 mAb therapy drives potent anti-tumor immunity. These results highlight TREM2 as a highly attractive target for immunotherapy modulation in individuals who are refractory to CPI therapy and likely have a TAM-rich tumor microenvironment.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Inibidores de Checkpoint Imunológico/farmacologia , Glicoproteínas de Membrana/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Receptores Imunológicos/antagonistas & inibidores , Macrófagos Associados a Tumor/efeitos dos fármacos , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Técnicas de Cocultura , Resistencia a Medicamentos Antineoplásicos , Feminino , Células HEK293 , Humanos , Ativação Linfocitária/efeitos dos fármacos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas , Microambiente Tumoral , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo
3.
Cancer Treat Res Commun ; 23: 100174, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32413603

RESUMO

BACKGROUND: A bioinformatics approach identified antitumor effects of tricyclic antidepressants (TCAs) in small cell lung cancer (SCLC) and other high-grade neuroendocrine carcinomas (grade 3 neuroendocrine carcinomas) (G3NEC) that was subsequently validated in preclinical models with a putative mechanism of action via inhibition of neuroendocrine signaling pathways. This study was undertaken to reposition the candidate TCA desipramine in a clinical trial in SCLC and G3NEC. METHODS: In this prospective, phase IIa intrapatient dose escalation clinical trial, patients were required to have failed at least one prior chemotherapy for metastatic SCLC or G3NEC. Treatment with desipramine began at 75 mg nightly with escalation in increments of 75 mg weekly to a maximum of 450 mg daily. RESULTS: Six patients were enrolled, 3 with SCLC, and 3 with G3NEC (lung, rectal, and pancreas). Tolerability of desipramine was worse than predicted. Of the 6 patients enrolled: 1 patient achieved 300 mg daily, 2 patients reached 150 mg daily, 1 patient reached 75 mg daily, and 2 patients were unable to tolerate any stable dose. Reasons for discontinuation included drug-related grade 3 colon pseudo-obstruction, unrelated GI bleed, and grade 1-2 neurocognitive adverse events. Median clinical or radiographic progression free survival was 1.2 months (range 0.2-3.3) and median overall survival from study entry was 2.7 months (range 1.3-5.6). CONCLUSIONS: No clinical or radiographic benefit was observed using desipramine to treat SCLC and G3NEC, so this trial was terminated. Intolerable low and medium grade neurocognitive side effects led to intermittent treatment and early discontinuation in most patients; given this limitation, doses achieved may be inadequate compared to the preclinical studies. MICROABSTRACT: A bioinformatics approach previously identified a potential antitumor effect of tricyclic antidepressants (TCAs) in small cell lung cancer (SCLC) and other high-grade neuroendocrine carcinomas (grade 3 neuroendocrine carcinoma) (G3NEC), which was validated in preclinical models. In this prospective, phase IIa clinical trial, patients were required to have failed at least one prior chemotherapy for metastatic SCLC or G3NEC (Ki-67 ≥ 20% or ≥ 20 mitoses/10 HPF). Treatment with desipramine began at 75 mg nightly with escalation by 75 mg weekly to a maximum dose of 450 mg daily. Six patients were enrolled on this clinical trial, 3 with SCLC, and 3 with G3NEC (lung, rectal, and pancreatic). Tolerability of desipramine was worse than predicted. In the 6 patients enrolled: 1 patient achieved 300 mg daily, 2 patients reached 150 mg daily, 1 patient reached 75 mg daily, and 2 patients were unable to tolerate any stable dose. Reasons for discontinuation included drug-related grade 3 colon pseudo-obstruction, unrelated GI bleed, and grade 1-2 drug related dizziness, confusion, and somnolence. Though numbers are small, median clinical or radiographic progression free survival was 1.2 months (range 0.2-3.3) and median overall survival from study entry was 2.7 months (range 1.3-5.6). Although preclinical evidence was promising, no clinical or radiographic benefit was observed using desipramine to treat SCLC and G3NEC, so this trial was terminated.

4.
Front Immunol ; 10: 1611, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31402908

RESUMO

The tumor microenvironment (TME) of diverse cancer types is often characterized by high levels of infiltrating myeloid cells including monocytes, macrophages, dendritic cells, and granulocytes. These cells perform a variety of functions in the TME, varying from immune suppressive to immune stimulatory roles. In this review, we summarize the different myeloid cell populations in the TME and the intratumoral myeloid targeting approaches that are being clinically investigated, and discuss strategies that identify new myeloid subpopulations within the TME. The TME therapies include agents that modulate the functional activities of myeloid populations, that impact recruitment and survival of myeloid subpopulations, and that functionally reprogram or activate myeloid populations. We discuss the benefits, limitations and potential side effects of these therapeutic approaches.


Assuntos
Células Mieloides/imunologia , Células Mieloides/metabolismo , Neoplasias/etiologia , Neoplasias/patologia , Microambiente Tumoral , Animais , Biomarcadores , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Imunomodulação , Macrófagos/imunologia , Macrófagos/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Microambiente Tumoral/imunologia
5.
Cancer Discov ; 8(10): 1316-1331, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30228179

RESUMO

The extent to which early events shape tumor evolution is largely uncharacterized, even though a better understanding of these early events may help identify key vulnerabilities in advanced tumors. Here, using genetically defined mouse models of small cell lung cancer (SCLC), we uncovered distinct metastatic programs attributable to the cell type of origin. In one model, tumors gain metastatic ability through amplification of the transcription factor NFIB and a widespread increase in chromatin accessibility, whereas in the other model, tumors become metastatic in the absence of NFIB-driven chromatin alterations. Gene-expression and chromatin accessibility analyses identify distinct mechanisms as well as markers predictive of metastatic progression in both groups. Underlying the difference between the two programs was the cell type of origin of the tumors, with NFIB-independent metastases arising from mature neuroendocrine cells. Our findings underscore the importance of the identity of cell type of origin in influencing tumor evolution and metastatic mechanisms.Significance: We show that SCLC can arise from different cell types of origin, which profoundly influences the eventual genetic and epigenetic changes that enable metastatic progression. Understanding intertumoral heterogeneity in SCLC, and across cancer types, may illuminate mechanisms of tumor progression and uncover how the cell type of origin affects tumor evolution. Cancer Discov; 8(10); 1316-31. ©2018 AACR. See related commentary by Pozo et al., p. 1216 This article is highlighted in the In This Issue feature, p. 1195.


Assuntos
Neoplasias Pulmonares/genética , Carcinoma de Pequenas Células do Pulmão/genética , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Carcinoma de Pequenas Células do Pulmão/patologia
6.
Nature ; 545(7654): 360-364, 2017 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-28489825

RESUMO

The Notch signalling pathway mediates cell fate decisions and is tumour suppressive or oncogenic depending on the context. During lung development, Notch pathway activation inhibits the differentiation of precursor cells to a neuroendocrine fate. In small-cell lung cancer, an aggressive neuroendocrine lung cancer, loss-of-function mutations in NOTCH genes and the inhibitory effects of ectopic Notch activation indicate that Notch signalling is tumour suppressive. Here we show that Notch signalling can be both tumour suppressive and pro-tumorigenic in small-cell lung cancer. Endogenous activation of the Notch pathway results in a neuroendocrine to non-neuroendocrine fate switch in 10-50% of tumour cells in a mouse model of small-cell lung cancer and in human tumours. This switch is mediated in part by Rest (also known as Nrsf), a transcriptional repressor that inhibits neuroendocrine gene expression. Non-neuroendocrine Notch-active small-cell lung cancer cells are slow growing, consistent with a tumour-suppressive role for Notch, but these cells are also relatively chemoresistant and provide trophic support to neuroendocrine tumour cells, consistent with a pro-tumorigenic role. Importantly, Notch blockade in combination with chemotherapy suppresses tumour growth and delays relapse in pre-clinical models. Thus, small-cell lung cancer tumours generate their own microenvironment via activation of Notch signalling in a subset of tumour cells, and the presence of these cells may serve as a biomarker for the use of Notch pathway inhibitors in combination with chemotherapy in select patients with small-cell lung cancer.


Assuntos
Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Receptores Notch/metabolismo , Transdução de Sinais , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia , Microambiente Tumoral , Animais , Diferenciação Celular , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Camundongos , Recidiva Local de Neoplasia/prevenção & controle , Receptores Notch/agonistas , Receptores Notch/antagonistas & inibidores , Receptores Notch/deficiência , Proteínas Repressoras/metabolismo , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico
7.
Cell Rep ; 16(3): 644-56, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27373157

RESUMO

Small cell lung cancer (SCLC) is a neuroendocrine lung cancer characterized by fast growth, early dissemination, and rapid resistance to chemotherapy. We identified a population of long-term tumor-propagating cells (TPCs) in a mouse model of SCLC. This population, marked by high levels of EpCAM and CD24, is also prevalent in human primary SCLC tumors. Murine SCLC TPCs are numerous and highly proliferative but not intrinsically chemoresistant, indicating that not all clinical features of SCLC are linked to TPCs. SCLC TPCs possess a distinct transcriptional profile compared to non-TPCs, including elevated MYC activity. Genetic and pharmacological inhibition of MYC in SCLC cells to non-TPC levels inhibits long-term propagation but not short-term growth. These studies identify a highly tumorigenic population of SCLC cells in mouse models, cell lines, and patient tumors and a means to target them in this most fatal form of lung cancer.


Assuntos
Neoplasias Pulmonares/patologia , Carcinoma de Pequenas Células do Pulmão/patologia , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Modelos Animais de Doenças , Humanos , Neoplasias Pulmonares/genética , Camundongos , Carcinoma de Pequenas Células do Pulmão/genética , Transcrição Gênica/fisiologia
8.
J Clin Invest ; 126(7): 2610-20, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27294525

RESUMO

Small-cell lung cancer (SCLC) is a highly aggressive subtype of lung cancer with limited treatment options. CD47 is a cell-surface molecule that promotes immune evasion by engaging signal-regulatory protein alpha (SIRPα), which serves as an inhibitory receptor on macrophages. Here, we found that CD47 is highly expressed on the surface of human SCLC cells; therefore, we investigated CD47-blocking immunotherapies as a potential approach for SCLC treatment. Disruption of the interaction of CD47 with SIRPα using anti-CD47 antibodies induced macrophage-mediated phagocytosis of human SCLC patient cells in culture. In a murine model, administration of CD47-blocking antibodies or targeted inactivation of the Cd47 gene markedly inhibited SCLC tumor growth. Furthermore, using comprehensive antibody arrays, we identified several possible therapeutic targets on the surface of SCLC cells. Antibodies to these targets, including CD56/neural cell adhesion molecule (NCAM), promoted phagocytosis in human SCLC cell lines that was enhanced when combined with CD47-blocking therapies. In light of recent clinical trials for CD47-blocking therapies in cancer treatment, these findings identify disruption of the CD47/SIRPα axis as a potential immunotherapeutic strategy for SCLC. This approach could enable personalized immunotherapeutic regimens in patients with SCLC and other cancers.


Assuntos
Antígeno CD47/metabolismo , Imunoterapia/métodos , Neoplasias Pulmonares/terapia , Macrófagos/imunologia , Carcinoma de Pequenas Células do Pulmão/terapia , Animais , Anticorpos Monoclonais/farmacologia , Antígeno CD56/metabolismo , Linhagem Celular Tumoral , Citocinas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Neoplasias Pulmonares/imunologia , Camundongos , Fagocitose , Receptores Imunológicos/metabolismo , Transdução de Sinais , Carcinoma de Pequenas Células do Pulmão/imunologia
9.
Nature ; 524(7563): 47-53, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26168399

RESUMO

We have sequenced the genomes of 110 small cell lung cancers (SCLC), one of the deadliest human cancers. In nearly all the tumours analysed we found bi-allelic inactivation of TP53 and RB1, sometimes by complex genomic rearrangements. Two tumours with wild-type RB1 had evidence of chromothripsis leading to overexpression of cyclin D1 (encoded by the CCND1 gene), revealing an alternative mechanism of Rb1 deregulation. Thus, loss of the tumour suppressors TP53 and RB1 is obligatory in SCLC. We discovered somatic genomic rearrangements of TP73 that create an oncogenic version of this gene, TP73Δex2/3. In rare cases, SCLC tumours exhibited kinase gene mutations, providing a possible therapeutic opportunity for individual patients. Finally, we observed inactivating mutations in NOTCH family genes in 25% of human SCLC. Accordingly, activation of Notch signalling in a pre-clinical SCLC mouse model strikingly reduced the number of tumours and extended the survival of the mutant mice. Furthermore, neuroendocrine gene expression was abrogated by Notch activity in SCLC cells. This first comprehensive study of somatic genome alterations in SCLC uncovers several key biological processes and identifies candidate therapeutic targets in this highly lethal form of cancer.


Assuntos
Genoma Humano/genética , Genômica , Neoplasias Pulmonares/genética , Mutação/genética , Carcinoma de Pequenas Células do Pulmão/genética , Alelos , Animais , Linhagem Celular Tumoral , Pontos de Quebra do Cromossomo , Ciclina D1/genética , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Sistemas Neurossecretores/metabolismo , Sistemas Neurossecretores/patologia , Proteínas Nucleares/genética , Receptores Notch/genética , Receptores Notch/metabolismo , Proteína do Retinoblastoma/genética , Transdução de Sinais/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia , Proteína Tumoral p73 , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética
10.
Cancer Discov ; 3(12): 1364-77, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24078773

RESUMO

UNLABELLED: Small cell lung cancer (SCLC) is an aggressive neuroendocrine subtype of lung cancer with high mortality. We used a systematic drug repositioning bioinformatics approach querying a large compendium of gene expression profiles to identify candidate U.S. Food and Drug Administration (FDA)-approved drugs to treat SCLC. We found that tricyclic antidepressants and related molecules potently induce apoptosis in both chemonaïve and chemoresistant SCLC cells in culture, in mouse and human SCLC tumors transplanted into immunocompromised mice, and in endogenous tumors from a mouse model for human SCLC. The candidate drugs activate stress pathways and induce cell death in SCLC cells, at least in part by disrupting autocrine survival signals involving neurotransmitters and their G protein-coupled receptors. The candidate drugs inhibit the growth of other neuroendocrine tumors, including pancreatic neuroendocrine tumors and Merkel cell carcinoma. These experiments identify novel targeted strategies that can be rapidly evaluated in patients with neuroendocrine tumors through the repurposing of approved drugs. SIGNIFICANCE: Our work shows the power of bioinformatics-based drug approaches to rapidly repurpose FDA-approved drugs and identifies a novel class of molecules to treat patients with SCLC, a cancer for which no effective novel systemic treatments have been identified in several decades. In addition, our experiments highlight the importance of novel autocrine mechanisms in promoting the growth of neuroendocrine tumor cells.


Assuntos
Antidepressivos Tricíclicos/farmacologia , Antineoplásicos/farmacologia , Reposicionamento de Medicamentos , Neoplasias Pulmonares/tratamento farmacológico , Tumores Neuroendócrinos/tratamento farmacológico , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/metabolismo , Animais , Antidepressivos Tricíclicos/uso terapêutico , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Biologia Computacional , Humanos , Neoplasias Pulmonares/fisiopatologia , Camundongos , Tumores Neuroendócrinos/fisiopatologia , Carcinoma de Pequenas Células do Pulmão/fisiopatologia , Ensaios Antitumorais Modelo de Xenoenxerto
11.
PLoS One ; 8(2): e55794, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23418461

RESUMO

SnoN is a negative regulator of TGF-ß signaling and also an activator of the tumor suppressor p53 in response to cellular stress. Its role in human cancer is complex and controversial with both pro-oncogenic and anti-oncogenic activities reported. To clarify its role in human cancer and provide clinical relevance to its signaling activities, we examined SnoN expression in normal and cancerous human esophageal, ovarian, pancreatic and breast tissues. In normal tissues, SnoN is expressed in both the epithelium and the surrounding stroma at a moderate level and is predominantly cytoplasmic. SnoN levels in all tumor epithelia examined are lower than or similar to that in the matched normal samples, consistent with its anti-tumorigenic activity in epithelial cells. In contrast, SnoN expression in the stroma is highly upregulated in the infiltrating inflammatory cells in high-grade esophageal and ovarian tumor samples, suggesting that SnoN may potentially promote malignant progression through modulating the tumor microenvironment in these tumor types. The overall levels of SnoN expression in these cancer tissues do not correlate with the p53 status. However, in human cancer cell lines with amplification of the snoN gene, a strong correlation between increased SnoN copy number and inactivation of p53 was detected, suggesting that the tumor suppressor SnoN-p53 pathway must be inactivated, either through downregulation of SnoN or inactivation of p53, in order to allow cancer cell to proliferate and survive. These data strongly suggest that SnoN can function as a tumor suppressor at early stages of tumorigenesis in human cancer tissues.


Assuntos
Mama/metabolismo , Esôfago/metabolismo , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Ovário/metabolismo , Pâncreas/metabolismo , Proteínas Proto-Oncogênicas/genética , Adulto , Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Progressão da Doença , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Esôfago/patologia , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Pessoa de Meia-Idade , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Ovário/patologia , Pâncreas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Proteína Supressora de Tumor p53/metabolismo
12.
Development ; 139(17): 3147-56, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22833129

RESUMO

Mammary epithelial cells undergo structural and functional differentiation at late pregnancy and parturition to produce and secrete milk. Both TGF-ß and prolactin pathways are crucial regulators of this process. However, how the activities of these two antagonistic pathways are orchestrated to initiate lactation has not been well defined. Here, we show that SnoN, a negative regulator of TGF-ß signaling, coordinates TGF-ß and prolactin signaling to control alveologenesis and lactogenesis. SnoN expression is induced at late pregnancy by the coordinated actions of TGF-ß and prolactin. The elevated SnoN promotes Stat5 signaling by enhancing its stability, thereby sharply increasing the activity of prolactin signaling at the onset of lactation. SnoN-/- mice display severe defects in alveologenesis and lactogenesis, and mammary epithelial cells from these mice fail to undergo proper morphogenesis. These defects can be rescued by an active Stat5. Thus, our study has identified a new player in the regulation of milk production and revealed a novel function of SnoN in mammary alveologenesis and lactogenesis in vivo through promotion of Stat5 signaling.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Lactação/fisiologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Prolactina/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/fisiologia , Animais , Western Blotting , Diferenciação Celular/fisiologia , Células Cultivadas , Primers do DNA/genética , Feminino , Imuno-Histoquímica , Glândulas Mamárias Animais/citologia , Camundongos , Camundongos Knockout , Gravidez , Proteínas Proto-Oncogênicas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Crescimento Transformador beta/metabolismo
13.
Curr Opin Pharmacol ; 10(6): 670-5, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20822955

RESUMO

SnoN (Ski-novel protein) was discovered as a nuclear proto-oncogene on the basis of its ability to induce transformation of chicken and quail embryonic fibroblasts. As a crucial negative regulator of transforming growth factor-ß (TGF-ß) signaling and also an activator of p53, it plays an important role in regulating cell proliferation, senescence, apoptosis, and differentiation. Recent studies of its expression patterns and functions in mouse models and mammalian cells have revealed important functions of SnoN in normal epithelial development and tumorigenesis. Evidence suggests that SnoN has both pro-oncogenic and anti-oncogenic functions by modulating multiple signaling pathways. These studies suggest that SnoN may have broad functions in the development and homeostasis of embryonic and postnatal tissues.


Assuntos
Transformação Celular Neoplásica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Transativadores/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Transformação Celular Neoplásica/genética , Desenvolvimento Embrionário , Feminino , Regulação da Expressão Gênica , Genes p53 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Terapia de Alvo Molecular , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/genética , Proto-Oncogenes , Transdução de Sinais/genética , Transativadores/genética , Transativadores/metabolismo , Fator de Crescimento Transformador beta/genética
14.
Cancer Res ; 70(10): 4204-13, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20460516

RESUMO

SnoN is an important negative regulator of transforming growth factor-beta (TGF-beta) signaling that was originally identified as a transforming oncogene in chicken embryonic fibroblasts. Both pro-oncogenic and antioncogenic activities of SnoN have been reported, but its function in normal epithelial cells has not been defined. In the mouse mammary gland, SnoN is expressed at relatively low levels, but it is transiently upregulated at late gestation before being downregulated during lactation and early involution. To assess the effects of elevated levels of SnoN, we generated transgenic mice expressing a SnoN fragment under the control of the mouse mammary tumor virus promoter. In this model system, SnoN elevation increased side-branching and lobular-alveolar proliferation in virgin glands, while accelerating involution in postlactation glands. Increased proliferation stimulated by SnoN was insufficient to induce mammary tumorigenesis. In contrast, elevated levels of SnoN cooperated with polyoma middle T antigen to accelerate the formation of aggressive multifocal adenocarcinomas and to increase the formation of pulmonary metastases. Our studies define functions of SnoN in mammary epithelial cell proliferation and involution, and provide the first in vivo evidence of a pro-oncogenic role for SnoN in mammalian tumorigenesis.


Assuntos
Adenocarcinoma/patologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Lactação , Neoplasias Pulmonares/secundário , Glândulas Mamárias Animais/citologia , Neoplasias Mamárias Animais/patologia , Proteínas Proto-Oncogênicas/fisiologia , Fator de Crescimento Transformador beta/genética , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animais , Western Blotting , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Glândulas Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/metabolismo , Vírus do Tumor Mamário do Camundongo/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Morfogênese , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Crescimento Transformador beta/metabolismo
15.
Mol Cell ; 29(5): 588-99, 2008 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-18249148

RESUMO

The general transcription factor P-TEFb stimulates RNA polymerase II elongation and cotranscriptional processing of pre-mRNA. Contributing to a functional equilibrium important for growth control, a reservoir of P-TEFb is maintained in an inactive snRNP where 7SK snRNA is a central scaffold. Here, we identify PIP7S as a La-related protein stably associated with and required for 7SK snRNP integrity. PIP7S binds and stabilizes nearly all the nuclear 7SK via 3' -UUU-OH, leading to the sequestration and inactivation of P-TEFb. This function requires its La domain and intact C terminus. The latter is frequently deleted in human tumors due to microsatellite instability-associated mutations. Consistent with the tumor suppressor role of a Drosophila homolog of PIP7S, loss of PIP7S function shifts the P-TEFb equilibrium toward the active state, disrupts epithelial differentiation, and causes P-TEFb-dependent malignant transformation. Through PIP7S modulation of P-TEFb, our data thus link a general elongation factor to growth control and tumorigenesis.


Assuntos
Autoantígenos/metabolismo , Neoplasias , Fator B de Elongação Transcricional Positiva/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Ribonucleoproteínas/metabolismo , Transcrição Gênica , Regiões 3' não Traduzidas , Animais , Autoantígenos/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Transformação Celular Neoplásica , HIV-1/genética , HIV-1/metabolismo , Humanos , Glândulas Mamárias Humanas/citologia , Glândulas Mamárias Humanas/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Fator B de Elongação Transcricional Positiva/genética , Ligação Proteica , Interferência de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Fatores de Transcrição , Uridina/química , Uridina/metabolismo , Antígeno SS-B
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...