Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chempluschem ; : e202400195, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666666

RESUMO

Silicon (Si) and silicon/graphite (Si/Gr) composite anodes are promising candidates due to their high theoretical capacity, low operating potential and natural abundance for high energy density Li-ion batteries. Green electrode production, eliminating organic volatile solvents require advancement of aqueous electrodes. Engineering the binder plays a critical role for improving waterborne electrodes. Lithium substituted polyacrylic acid LiPAA has been demonstrated as a promising binder for Si/Gr anodes and for Ni-rich cathodes in different cell configurations. LiPAA is utilized to minimize the volume expansion during cycling for Si/Gr anodes. LiPAA is formed in situ during cathode slurry preparation to regulate the pH and dimmish the Li loss. Using advanced characterization techniques, we investigated the slurries, electrodes, and active material reaction with LiPAA and its effect to the cycling performance. Our results indicate that the performance of high Si containing anode is limited by the amount of Si in the electrode. The failure mechanism with respect to high Si content was studied thoroughly. Aqueous processed cathodes with LiPAA binder in combination with Si anodes outperformed NMP based cathodes. Hence, LiPAA was successfully utilized as an active binder for both a high Si containing anode and for a Ni rich cathode.

2.
Chem Sci ; 14(36): 9923-9932, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37736636

RESUMO

Magnesium-ion batteries (MIBs) are of considerable interest as environmentally more sustainable, cheaper, and safer alternatives to Li-ion systems. However, spontaneous electrolyte decomposition occurs due to the low standard reduction potential of Mg, leading to the deposition of layers known as native solid electrolyte interphases (n-SEIs). These layers may inhibit the charge transfer (electrons and ions) and, therefore, reduce the specific power and cycle life of MIBs. We propose scanning electrochemical microscopy (SECM) as a microelectrochemical tool to locally quantify the electronic properties of n-SEIs for MIBs. These interphases are spontaneously formed upon contact of Mg metal disks with organoaluminate, organoborate, or bis(trifluoromethanesulfonyl)imide (TFSI)-based electrolyte solutions. Our results unveil increased local electronic and global ionic insulating properties of the n-SEI formed when using TFSI-based electrolytes, whereas a low electronically protecting character is observed with the organoaluminate solution, and the organoborate solution being in between them. Moreover, ex situ morphological and chemical characterization was performed on the Mg samples to support the results obtained by the SECM measurements. Differences in the electronic and ionic conductivities of n-SEIs perfectly correlate with their chemical compositions.

3.
Nanomaterials (Basel) ; 12(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35159665

RESUMO

Manufacturing thick electrodes for Li-ion batteries is a challenging task to fulfill, but leads to higher energy densities inside the cell. Water-based processing even adds an extra level of complexity to the procedure. The focus of this work is to implement a multi-layered coating in an industrially relevant process, to overcome issues in electrode integrity and to enable high electrochemical performance. LiNi0.8Mn0.1Co0.1O2 (NMC811) was used as the active material to fabricate single- and multi-layered cathodes with areal capacities of 8.6 mA h cm-2. A detailed description of the manufacturing process is given to establish thick defect-free aqueous electrodes. Good inter-layer cohesion and adhesion to the current collector foil are achieved by multi-layering, as confirmed by optical analysis and peel testing. Furthermore, full cells were assembled and rate capability tests were performed. These tests show that by multi-layering, an increase in specific discharge capacity (e.g., 20.7% increase for C/10) can be established for all tested C-rates.

4.
ChemSusChem ; 15(5): e202102404, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-34905292

RESUMO

Ordered mesoporous CuNiCo oxides were prepared via nanocasting with varied Cu/Ni ratio to establish its impact on the electrochemical performance of the catalysts. Physicochemical properties were determined along with the electrocatalytic activities toward oxygen evolution/reduction reactions (OER/ORR). Combining Cu, Ni, and Co allowed creating active and stable bifunctional electrocatalysts. CuNiCo oxide (Cu/Ni≈1 : 4) exhibited the highest current density of 411 mA cm-2 at 1.7 V vs. reversible hydrogen electrode (RHE) and required the lowest overpotential of 312 mV to reach 10 mA cm-2 in 1 m KOH after 200 cyclic voltammograms. OER measurements were also conducted in the purified 1 m KOH, where CuNiCo oxide (Cu/Ni≈1 : 4) also outperformed NiCo oxide and showed excellent chemical and catalytic stability. For ORR, Cu/Ni incorporation provided higher current density, better kinetics, and facilitated the 4e- pathway of the oxygen reduction reaction. The tests in Li-O2 cells highlighted that CuNiCo oxide can effectively promote ORR and OER at a lower overpotential.

5.
Sci Technol Adv Mater ; 21(1): 653-660, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33061838

RESUMO

The chemical diffusion coefficient in LiNi1/3Mn1/3Co1/3O2 was determined via the galvanostatic intermittent titration technique in the voltage range 3 to 4.2 V. Calculated diffusion coefficients in these layered oxide cathodes during charging and discharging reach a minimum at the open-circuit voltage of 3.8 V and 3.7 V vs. Li/Li+, respectively. The observed minima of the chemical diffusion coefficients indicate a phase transition in this voltage range. The unit cell parameters of LiNi1/3Mn1/3Co1/3O2 cathodes were determined at different lithiation states using ex situ crystallographic analysis. It was shown that the unit cell parameter variation correlates well with the observed values for chemical diffusion in NMC cathodes; with a notable change in absolute values in the same voltage range. We relate the observed variation in unit cell parameters to the nickel conversion into the trivalent state, which is Jahn-Teller active, and to the re-arrangement of lithium ions and vacancies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...