RESUMO
Agri-food systems are besieged by malnutrition, yield gaps, and climate vulnerability, but integrated, research-based responses in public policy, agricultural, value chains, and finance are constrained by short-termism and zero sum thinking. As they respond to current and emerging agri-food system challenges, decision makers need new tools that steer toward multi-sector, evidence-based collaboration. To support national agri-food system policy processes, the Integrated Agri-food System Initiative (IASI) methodology was developed and validated through case studies in Mexico and Colombia. This holistic, multi-sector methodology builds on diverse existing data resources and leverages situation analysis, modeled predictions, and scenarios to synchronize public and private action at the national level toward sustainable, equitable, and inclusive agri-food systems. Culminating in collectively agreed strategies and multi-partner tactical plans, the IASI methodology enabled a multi-level systems approach by mobilizing design thinking to foster mindset shifts and stakeholder consensus on sustainable and scalable innovations that respond to real-time dynamics in complex agri-food systems. To build capacity for these types of integrated, context-specific approaches, greater investment is needed in supportive international institutions that function as trusted in-region 'innovation brokers.' This paper calls for a structured global network to advance adaptation and evolution of essential tools like the IASI methodology in support of the One CGIAR mandate and in service of positive agri-food systems transformation.
Assuntos
Agricultura , Mudança Climática , Alimentos , Investimentos em Saúde , Política PúblicaRESUMO
BACKGROUND: Potato virus Y (PVY) is a major pathogen of potatoes with major impact on global agricultural production. Resistance to PVY can be achieved by engineering potatoes to express a recessive, resistant allele of eukaryotic translation initiation factor eIF4E, a host dependency factor essential to PVY replication. Here we analyzed transcriptome changes in eIF4E over-expressing potatoes to shed light on the mechanism underpinning eIF4E-mediated recessive PVY resistance. RESULTS: As anticipated, modified eIF4E-expressing potatoes demonstrated a high level of resistance, eIF4E expression, and an unexpected suppression of the susceptible allele transcript, likely explaining the bulk of the potent antiviral phenotype. In resistant plants, we also detected marked upregulation of genes involved in cell stress responses. CONCLUSIONS: Our results reveal a previously unanticipated second layer of signaling attributable to eIF4E regulatory control, and potentially relevant to establishment of a broader, more systematic antiviral host defense.