Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2508, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509070

RESUMO

In the secretory pathway the destination of trafficking vesicles is determined by specific proteins that, with the notable exception of SNAREs, are recruited from soluble pools. Previously we have shown that microinjected proteoliposomes containing early or late endosomal SNAREs, respectively, are targeted to the corresponding endogenous compartments, with targeting specificity being dependent on the recruitment of tethering factors by some of the SNAREs. Here, we show that targeting of SNARE-containing liposomes is refined upon inclusion of polyphosphoinositides and Rab5. Intriguingly, targeting specificity is dependent on the concentration of PtdIns(3)P, and on the recruitment of PtdIns(3)P binding proteins such as rabenosyn-5 and PIKfyve, with conversion of PtdIns(3)P into PtdIns(3,5)P2 re-routing the liposomes towards late endosomes despite the presence of GTP-Rab5 and early endosomal SNAREs. Our data reveal a complex interplay between permissive and inhibitory targeting signals that sharpen a basic targeting and fusion machinery for conveying selectivity in intracellular membrane traffic.


Assuntos
Proteínas SNARE , Proteínas rab de Ligação ao GTP , Proteínas SNARE/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Fosfatidilinositóis/metabolismo , Lipossomos/metabolismo , Endossomos/metabolismo , Fusão de Membrana
2.
Eur Phys J E Soft Matter ; 47(1): 8, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270681

RESUMO

We study the formation of vesicle condensates induced by the protein synapsin, as a cell-free model system mimicking vesicle pool formation in the synapse. The system can be considered as an example of liquid-liquid phase separation (LLPS) in biomolecular fluids, where one phase is a complex fluid itself consisting of vesicles and a protein network. We address the pertinent question why the LLPS is self-limiting and stops at a certain size, i.e., why macroscopic phase separation is prevented. Using fluorescence light microscopy, we observe different morphologies of the condensates (aggregates) depending on the protein-to-lipid ratio. Cryogenic electron microscopy then allows us to resolve individual vesicle positions and shapes in a condensate and notably the size and geometry of adhesion zones between vesicles. We hypothesize that the membrane tension induced by already formed adhesion zones then in turn limits the capability of vesicles to bind additional vesicles, resulting in a finite condensate size. In a simple numerical toy model we show that this effect can be accounted for by redistribution of effective binding particles on the vesicle surface, accounting for the synapsin-induced adhesion zone.

3.
Proc Natl Acad Sci U S A ; 121(2): e2309161121, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38170748

RESUMO

In neuronal cell types, vesicular exocytosis is governed by the SNARE (soluble NSF attachment receptor) complex consisting of synaptobrevin2, SNAP25, and syntaxin1. These proteins are required for vesicle priming and fusion. We generated an improved SNAP25-based SNARE COmplex Reporter (SCORE2) incorporating mCeruelan3 and Venus and overexpressed it in SNAP25 knockout embryonic mouse chromaffin cells. This construct rescues vesicle fusion with properties indistinguishable from fusion in wild-type cells. Combining electrochemical imaging of individual release events using electrochemical detector arrays with total internal reflection fluorescence resonance energy transfer (TIR-FRET) imaging reveals a rapid FRET increase preceding individual fusion events by 65 ms. The experiments are performed under conditions of a steady-state cycle of docking, priming, and fusion, and the delay suggests that the FRET change reflects tight docking and priming of the vesicle, followed by fusion after ~65 ms. Given the absence of wt SNAP25, SCORE2 allows determination of the number of molecules at fusion sites and the number that changes conformation. The number of SNAP25 molecules changing conformation in the priming step increases with vesicle size and SNAP25 density in the plasma membrane and equals the number of copies present in the vesicle-plasma membrane contact zone. We estimate that in wt cells, 6 to 7 copies of SNAP25 change conformation during the priming step.


Assuntos
Células Cromafins , Proteínas SNARE , Animais , Camundongos , Membrana Celular/metabolismo , Células Cromafins/metabolismo , Exocitose/fisiologia , Fusão de Membrana/fisiologia , Proteínas SNARE/metabolismo , Proteína 25 Associada a Sinaptossoma/genética , Proteína 25 Associada a Sinaptossoma/metabolismo
4.
Nat Rev Mol Cell Biol ; 25(2): 101-118, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37848589

RESUMO

Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are a family of small conserved eukaryotic proteins that mediate membrane fusion between organelles and with the plasma membrane. SNAREs are directly or indirectly anchored to membranes. Prior to fusion, complementary SNAREs assemble between membranes with the aid of accessory proteins that provide a scaffold to initiate SNARE zippering, pulling the membranes together and mediating fusion. Recent advances have enabled the construction of detailed models describing bilayer transitions and energy barriers along the fusion pathway and have elucidated the structures of SNAREs complexed in various states with regulatory proteins. In this Review, we discuss how these advances are yielding an increasingly detailed picture of the SNARE-mediated fusion pathway, leading from first contact between the membranes via metastable non-bilayer intermediates towards the opening and expansion of a fusion pore. We describe how SNARE proteins assemble into complexes, how this assembly is regulated by accessory proteins and how SNARE complexes overcome the free energy barriers that prevent spontaneous membrane fusion.


Assuntos
Fusão de Membrana , Proteínas SNARE , Membrana Celular/metabolismo
5.
Mol Cell Proteomics ; 23(2): 100704, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128648

RESUMO

In the ear, inner hair cells (IHCs) employ sophisticated glutamatergic ribbon synapses with afferent neurons to transmit auditory information to the brain. The presynaptic machinery responsible for neurotransmitter release in IHC synapses includes proteins such as the multi-C2-domain protein otoferlin and the vesicular glutamate transporter 3 (VGluT3). Yet, much of this likely unique molecular machinery remains to be deciphered. The scarcity of material has so far hampered biochemical studies which require large amounts of purified samples. We developed a subcellular fractionation workflow combined with immunoisolation of VGluT3-containing membrane vesicles, allowing for the enrichment of glutamatergic organelles that are likely dominated by synaptic vesicles (SVs) of IHCs. We have characterized their protein composition in mice before and after hearing onset using mass spectrometry and confocal imaging and provide a fully annotated proteome with hitherto unidentified proteins. Despite the prevalence of IHC marker proteins across IHC maturation, the profiles of trafficking proteins differed markedly before and after hearing onset. Among the proteins enriched after hearing onset were VAMP-7, syntaxin-7, syntaxin-8, syntaxin-12/13, SCAMP1, V-ATPase, SV2, and PKCα. Our study provides an inventory of the machinery associated with synaptic vesicle-mediated trafficking and presynaptic activity at IHC ribbon synapses and serves as a foundation for future functional studies.


Assuntos
Células Ciliadas Auditivas Internas , Proteômica , Camundongos , Animais , Células Ciliadas Auditivas Internas/metabolismo , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas de Membrana/metabolismo
6.
Autophagy ; : 1-19, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37881948

RESUMO

In neurons, autophagosome biogenesis occurs mainly in distal axons, followed by maturation during retrograde transport. Autophagosomal growth depends on the supply of membrane lipids which requires small vesicles containing ATG9, a lipid scramblase essential for macroautophagy/autophagy. Here, we show that ATG9-containing vesicles are enriched in synapses and resemble synaptic vesicles in size and density. The proteome of ATG9-containing vesicles immuno-isolated from nerve terminals showed conspicuously low levels of trafficking proteins except of the AP2-complex and some enzymes involved in endosomal phosphatidylinositol metabolism. Super resolution microscopy of nerve terminals and isolated vesicles revealed that ATG9-containing vesicles represent a distinct vesicle population with limited overlap not only with synaptic vesicles but also other membranes of the secretory pathway, uncovering a surprising heterogeneity in their membrane composition. Our results are compatible with the view that ATG9-containing vesicles function as lipid shuttles that scavenge membrane lipids from various intracellular membranes to support autophagosome biogenesis.Abbreviations: AP: adaptor related protein complex: ATG2: autophagy related 2; ATG9: autophagy related 9; DNA PAINT: DNA-based point accumulation for imaging in nanoscale topography; DyMIN STED: dynamic minimum stimulated emission depletion; EL: endosome and lysosome; ER: endoplasmic reticulum; GA: Golgi apparatus; iBAQ: intensity based absolute quantification; LAMP: lysosomal-associated membrane protein; M6PR: mannose-6-phosphate receptor, cation dependent; Minflux: minimal photon fluxes; Mito: mitochondria; MS: mass spectrometry; PAS: phagophore assembly site; PM: plasma membrane; Px: peroxisome; RAB26: RAB26, member RAS oncogene family; RAB3A: RAB3A, member RAS oncogene family; RAB5A: RAB5A, member RAS oncogene family; SNARE: soluble N-ethylmaleimide-sensitive-factor attachment receptor; SVs: synaptic vesicles; SYP: synaptophysin; TGN: trans-Golgi network; TRAPP: transport protein particle; VTI1: vesicle transport through interaction with t-SNAREs.

7.
J Mol Biol ; 435(10): 168069, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37003471

RESUMO

The neuronal SNARE protein SNAP25a (isoform 2) forms part of the SNARE complex eliciting synaptic vesicle fusion during neuronal exocytosis. While the post-fusion cis-SNARE complex has been studied extensively, little is known about the pre-fusion conformation of SNAP25a. Here we analyze monomeric SNAP25a by NMR spectroscopy, further supported by small-angle X-ray scattering (SAXS) experiments. SAXS data indicate that monomeric SNAP25 is more compact than a Gaussian chain but still a random coil. NMR shows that for monomeric SNAP25a, before SNAP25a interacts with its SNARE partners to drive membrane fusion, only the N-terminal part (region A5 to V36) of the first SNARE motif, SN1 (L11 - L81), is helical, comprising two α-helices (ranging from A5 to Q20 and S25 toV36). From E37 onwards, SNAP25a is mostly disordered and displays high internal flexibility, including the C-terminal part of SN1, almost the entire second SNARE motif (SN2, N144-A199), and the connecting loop region. Apart from the N-terminal helices, only the C-termini of both SN1 (E73 - K79) and SN2 (region T190 - A199), as well as two short regions in the connecting loop (D99 - K102 and E123 - M127) show a weak α-helical propensity (α-helical population < 25%). We speculate that the N-terminal helices (A5 to Q20 and S25 to V36) which constitute the N-terminus of SN1 act as a nucleation site for initiating SNARE zippering.


Assuntos
Fusão de Membrana , Neurônios , Proteínas SNARE , Neurônios/metabolismo , Conformação Proteica , Espalhamento a Baixo Ângulo , Proteínas SNARE/metabolismo , Difração de Raios X , Humanos
8.
Nature ; 611(7937): 827-834, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36418452

RESUMO

Vacuolar-type adenosine triphosphatases (V-ATPases)1-3 are electrogenic rotary mechanoenzymes structurally related to F-type ATP synthases4,5. They hydrolyse ATP to establish electrochemical proton gradients for a plethora of cellular processes1,3. In neurons, the loading of all neurotransmitters into synaptic vesicles is energized by about one V-ATPase molecule per synaptic vesicle6,7. To shed light on this bona fide single-molecule biological process, we investigated electrogenic proton-pumping by single mammalian-brain V-ATPases in single synaptic vesicles. Here we show that V-ATPases do not pump continuously in time, as suggested by observing the rotation of bacterial homologues8 and assuming strict ATP-proton coupling. Instead, they stochastically switch between three ultralong-lived modes: proton-pumping, inactive and proton-leaky. Notably, direct observation of pumping revealed that physiologically relevant concentrations of ATP do not regulate the intrinsic pumping rate. ATP regulates V-ATPase activity through the switching probability of the proton-pumping mode. By contrast, electrochemical proton gradients regulate the pumping rate and the switching of the pumping and inactive modes. A direct consequence of mode-switching is all-or-none stochastic fluctuations in the electrochemical gradient of synaptic vesicles that would be expected to introduce stochasticity in proton-driven secondary active loading of neurotransmitters and may thus have important implications for neurotransmission. This work reveals and emphasizes the mechanistic and biological importance of ultraslow mode-switching.


Assuntos
Encéfalo , Mamíferos , ATPases Vacuolares Próton-Translocadoras , Animais , Trifosfato de Adenosina/metabolismo , Encéfalo/enzimologia , Encéfalo/metabolismo , Mamíferos/metabolismo , Prótons , Vesículas Sinápticas/enzimologia , Vesículas Sinápticas/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Neurotransmissores/metabolismo , Transmissão Sináptica , Fatores de Tempo , Cinética
10.
Eur Biophys J ; 51(6): 465-482, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35904588

RESUMO

The size, polydispersity, and electron density profile of synaptic vesicles (SVs) can be studied by small-angle X-ray scattering (SAXS), i.e. by X-ray diffraction from purified SV suspensions in solution. Here we show that size and shape transformations, as they appear in the functional context of these important synaptic organelles, can also be monitored by SAXS. In particular, we have investigated the active uptake of neurotransmitters, and find a mean vesicle radius increase of about 12% after the uptake of glutamate, which indicates an unusually large extensibility of the vesicle surface, likely to be accompanied by conformational changes of membrane proteins and rearrangements of the bilayer. Changes in the electron density profile (EDP) give first indications for such a rearrangement. Details of the protein structure are screened, however, by SVs polydispersity. To overcome the limitations of large ensemble averages and heterogeneous structures, we therefore propose serial X-ray diffraction by single free electron laser pulses. Using simulated data for realistic parameters, we show that this is in principle feasible, and that even spatial distances between vesicle proteins could be assessed by this approach.


Assuntos
Ácido Glutâmico , Vesículas Sinápticas , Transporte Biológico , Proteínas/metabolismo , Espalhamento a Baixo Ângulo , Vesículas Sinápticas/química , Vesículas Sinápticas/metabolismo , Difração de Raios X
11.
Neuron ; 110(9): 1483-1497.e7, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35263617

RESUMO

Vesicular transporters (VTs) define the type of neurotransmitter that synaptic vesicles (SVs) store and release. While certain mammalian neurons release multiple transmitters, it is not clear whether the release occurs from the same or distinct vesicle pools at the synapse. Using quantitative single-vesicle imaging, we show that a vast majority of SVs in the rodent brain contain only one type of VT, indicating specificity for a single neurotransmitter. Interestingly, SVs containing dual transporters are highly diverse (27 types) but small in proportion (2% of all SVs), excluding the largest pool that carries VGLUT1 and ZnT3 (34%). Using VGLUT1-ZnT3 SVs, we demonstrate that the transporter colocalization influences the SV content and synaptic quantal size. Thus, the presence of diverse transporters on the same vesicle is bona fide, and depending on the VT types, this may act to regulate neurotransmitter type, content, and release in space and time.


Assuntos
Proteínas de Transporte de Neurotransmissores , Vesículas Sinápticas , Animais , Mamíferos , Proteínas de Membrana Transportadoras , Neurotransmissores , Sinapses , Vesículas Sinápticas/fisiologia , Proteína Vesicular 1 de Transporte de Glutamato
12.
Nat Commun ; 13(1): 1029, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210420

RESUMO

Cytotoxic T lymphocytes (CTL) kill malignant and infected cells through the directed release of cytotoxic proteins into the immunological synapse (IS). The cytotoxic protein granzyme B (GzmB) is released in its soluble form or in supramolecular attack particles (SMAP). We utilize synaptobrevin2-mRFP knock-in mice to isolate fusogenic cytotoxic granules in an unbiased manner and visualize them alone or in degranulating CTLs. We identified two classes of fusion-competent granules, single core granules (SCG) and multi core granules (MCG), with different diameter, morphology and protein composition. Functional analyses demonstrate that both classes of granules fuse with the plasma membrane at the IS. SCG fusion releases soluble GzmB. MCGs can be labelled with the SMAP marker thrombospondin-1 and their fusion releases intact SMAPs. We propose that CTLs use SCG fusion to fill the synaptic cleft with active cytotoxic proteins instantly and parallel MCG fusion to deliver latent SMAPs for delayed killing of refractory targets.


Assuntos
Sinapses Imunológicas , Linfócitos T Citotóxicos , Animais , Membrana Celular , Grânulos Citoplasmáticos/metabolismo , Sinapses Imunológicas/metabolismo , Camundongos
13.
Biochem J ; 479(3): 273-288, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35119456

RESUMO

Membrane traffic in eukaryotic cells is mediated by transport vesicles that bud from a precursor compartment and are transported to their destination compartment where they dock and fuse. To reach their intracellular destination, transport vesicles contain targeting signals such as Rab GTPases and polyphosphoinositides that are recognized by tethering factors in the cytoplasm and that connect the vesicles with their respective destination compartment. The final step, membrane fusion, is mediated by SNARE proteins. SNAREs are connected to targeting signals and tethering factors by multiple interactions. However, it is still debated whether SNAREs only function downstream of targeting and tethering or whether they also participate in regulating targeting specificity. Here, we review the evidence and discuss recent data supporting a role of SNARE proteins as targeting signals in vesicle traffic.


Assuntos
Células Eucarióticas/metabolismo , Proteínas SNARE/metabolismo , Transdução de Sinais/fisiologia , Vesículas Transportadoras/metabolismo , Membrana Celular/metabolismo , Humanos , Fusão de Membrana/fisiologia , Transporte Proteico/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo
14.
Methods Mol Biol ; 2417: 131-145, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35099797

RESUMO

Synaptic vesicles (SVs) store neurotransmitters and undergo a fine-tuned regulatory and dynamic cycle of exo- and endocytosis, which is essential for neurotransmission at chemical synapses. The development of protocols for isolating SVs from biological extracts was a fundamental accomplishment since it allowed for characterizing the molecular properties of SVs using biochemical methods. In this chapter, we describe a modified procedure for isolating SVs from a few g of rodent brain and that can be completed within ~12 h. The protocol involves the preparation of isolated nerve terminals from which SVs are released by osmotic shock and then enriched via various centrifugation steps, followed by size exclusion chromatography as final purification step. The final vesicle fraction is 22-fold enriched in SVs over the starting material, and the final yield of SVs obtained using this protocol is approximately 20 µg of protein per gram of mouse brain. The degree of contamination by other organelles and particles monitored by morphology and immunolabeling compares well with that of the classical protocols.


Assuntos
Sinapses , Vesículas Sinápticas , Animais , Encéfalo/metabolismo , Mamíferos , Camundongos , Neurotransmissores/metabolismo , Sinapses/metabolismo , Transmissão Sináptica , Vesículas Sinápticas/metabolismo
15.
Nano Lett ; 22(3): 1449-1455, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34855407

RESUMO

A mechanism for full-length synaptotagmin-1 (syt-1) to interact with anionic bilayers and to promote fusion in the presence of SNAREs is proposed. Colloidal probe force spectroscopy in conjunction with tethered particle motion monitoring showed that in the absence of Ca2+ the binding of syt-1 to membranes depends on the presence and content of PI(4,5)P2. Addition of Ca2+ switches the interaction forces from weak to strong, eventually exceeding the cohesion of the C2A domain of syt-1 leading to partial unfolding of the protein. Fusion of single unilamellar vesicles equipped with syt-1 and synaptobrevin 2 with planar pore-spanning target membranes containing PS and PI(4,5)P2 shows an almost complete suppression of stalled intermediate fusion states and an accelerated fusion kinetics in the presence of Ca2+, which is further enhanced upon addition of ATP.


Assuntos
Cálcio , Fosfatidilinositol 4,5-Difosfato , Proteínas SNARE , Sinaptotagmina I , Cálcio/química , Cálcio/metabolismo , Cinética , Fusão de Membrana , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Desdobramento de Proteína , Sinaptotagmina I/química , Sinaptotagmina I/metabolismo
16.
Nat Commun ; 12(1): 4972, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404795

RESUMO

A variety of artificial cells springs from the functionalization of liposomes with proteins. However, these models suffer from low durability without repair and replenishment mechanisms, which can be partly addressed by replacing the lipids with polymers. Yet natural membranes are also dynamically remodeled in multiple cellular processes. Here, we show that synthetic amphiphile membranes also undergo fusion, mediated by the protein machinery for synaptic secretion. We integrated fusogenic SNAREs in polymer and hybrid vesicles and observed efficient membrane and content mixing. We determined bending rigidity and pore edge tension as key parameters for fusion and described its plausible progression through cryo-EM snapshots. These findings demonstrate that dynamic membrane phenomena can be reconstituted in synthetic materials, thereby providing new tools for the assembly of synthetic protocells.


Assuntos
Fusão de Membrana/fisiologia , Membranas/metabolismo , Polímeros/metabolismo , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Animais , Microscopia Crioeletrônica , Lipossomos/metabolismo , Proteínas do Tecido Nervoso , Ligação Proteica , Proteínas R-SNARE , Ratos , Proteína 25 Associada a Sinaptossoma , Sintaxina 1 , Proteína 2 Associada à Membrana da Vesícula
17.
Nat Commun ; 12(1): 3606, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127664

RESUMO

Membrane fusion is fundamental to biological processes as diverse as membrane trafficking or viral infection. Proteins catalyzing membrane fusion need to overcome energy barriers to induce intermediate steps in which the integrity of bilayers is lost. Here, we investigate the structural features of tightly docked intermediates preceding hemifusion. Using lipid vesicles in which progression to hemifusion is arrested, we show that the metastable intermediate does not require but is enhanced by divalent cations and is characterized by the absence of proteins and local membrane thickening. Molecular dynamics simulations reveal that thickening is due to profound lipid rearrangements induced by dehydration of the membrane surface.


Assuntos
Fusão de Membrana/fisiologia , Membranas/química , Simulação de Dinâmica Molecular , Animais , Fenômenos Biofísicos , Microscopia Crioeletrônica , Escherichia coli/genética , Bicamadas Lipídicas/química , Ratos , Proteínas SNARE/química , Proteínas SNARE/metabolismo
18.
Arch Biochem Biophys ; 709: 108966, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34139199

RESUMO

Chemical neurotransmission is the major mechanism of neuronal communication. Neurotransmitters are released from secretory organelles, the synaptic vesicles (SVs) via exocytosis into the synaptic cleft. Fusion of SVs with the presynaptic plasma membrane is balanced by endocytosis, thus maintaining the presynaptic membrane at steady-state levels. The protein machineries responsible for exo- and endocytosis have been extensively investigated. In contrast, less is known about the role of lipids in synaptic transmission and how the lipid composition of SVs is affected by dynamic exo-endocytotic cycling. Here we summarize the current knowledge about the composition, organization, and function of SV membrane lipids. We also cover lipid biogenesis and maintenance during the synaptic vesicle cycle.


Assuntos
Membranas Sinápticas/química , Vesículas Sinápticas/química , Animais , Endocitose/fisiologia , Exocitose/fisiologia , Humanos , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Membranas Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo
19.
Nat Commun ; 12(1): 3206, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34050166

RESUMO

Fueled by ATP hydrolysis in N-ethylmaleimide sensitive factor (NSF), the 20S complex disassembles rigid SNARE (soluble NSF attachment protein receptor) complexes in single unraveling step. This global disassembly distinguishes NSF from other molecular motors that make incremental and processive motions, but the molecular underpinnings of its remarkable energy efficiency remain largely unknown. Using multiple single-molecule methods, we found remarkable cooperativity in mechanical connection between NSF and the SNARE complex, which prevents dysfunctional 20S complexes that consume ATP without productive disassembly. We also constructed ATP hydrolysis cycle of the 20S complex, in which NSF largely shows randomness in ATP binding but switches to perfect ATP hydrolysis synchronization to induce global SNARE disassembly, minimizing ATP hydrolysis by non-20S complex-forming NSF molecules. These two mechanisms work in concert to concentrate ATP consumption into functional 20S complexes, suggesting evolutionary adaptations by the 20S complex to the energetically expensive mechanical task of SNARE complex disassembly.


Assuntos
Trifosfato de Adenosina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas SNARE/metabolismo , Animais , Bovinos , Cricetulus , Hidrólise , Modelos Moleculares , Proteínas Sensíveis a N-Etilmaleimida/isolamento & purificação , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/isolamento & purificação , Ligação Proteica , Multimerização Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/isolamento & purificação , Imagem Individual de Molécula , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/isolamento & purificação , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo
20.
Biochem Biophys Res Commun ; 559: 92-98, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33933994

RESUMO

Synaptic transmission is mediated by neurotransmitters that are stored in synaptic vesicles (SV) and released at the synaptic active zone (AZ). While in recent years major progress has been made in unraveling the molecular machinery responsible for SV docking, fusion and exocytosis, the mechanisms governing AZ protein and SV trafficking through axons still remain unclear. Here, we performed stop-flow nerve ligation to examine axonal trafficking of endogenous AZ and SV proteins. Rat sciatic nerves were collected 1 h, 3 h and 8 h post ligation and processed for immunohistochemistry and electron microscopy. First, we followed the transport of an integral synaptic vesicle protein, SV2A and a SV-associated protein involved in SV trafficking, Rab3a, and observed that while SV2A accumulated on both sides of ligation, Rab3a was only noticeable in the proximal segment of the ligated nerve indicating that only SV trans-membrane protein SV2A displayed a bi-directional axonal transport. We then demonstrate that multiple AZ proteins accumulate rapidly on either side of the ligation with a timescale similar to that of SV2A. Overall, our data uncovers an unexpected robust bi-directional, coordinated -trafficking of SV and AZ proteins in peripheral nerves. This implies that pathological disruption of axonal trafficking will not only impair trafficking of newly synthesized proteins to the synapse but will also affect retrograde transport, leading to neuronal dysfunction and likely neurodegeneration.


Assuntos
Transporte Axonal , Proteínas do Tecido Nervoso/metabolismo , Nervos Periféricos/fisiologia , Transporte Proteico , Vesículas Sinápticas/metabolismo , Animais , Masculino , Ratos Sprague-Dawley , Transmissão Sináptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...