Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Skelet Muscle ; 10(1): 37, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33308300

RESUMO

BACKGROUND: Nonsense or loss-of-function mutations in the non-lysosomal cysteine protease calpain-3 result in limb-girdle muscular dystrophy type 2A (LGMD2A). While calpain-3 is implicated in muscle cell differentiation, sarcomere formation, and muscle cytoskeletal remodeling, the physiological basis for LGMD2A has remained elusive. METHODS: Cell growth, gene expression profiling, and mitochondrial content and function were analyzed using muscle and muscle cell cultures established from healthy and calpain-3-deficient mice. Calpain-3-deficient mice were also treated with PPAR-delta agonist (GW501516) to assess mitochondrial function and membrane repair. The unpaired t test was used to assess the significance of the differences observed between the two groups or treatments. ANOVAs were used to assess significance over time. RESULTS: We find that calpain-3 deficiency causes mitochondrial dysfunction in the muscles and myoblasts. Calpain-3-deficient myoblasts showed increased proliferation, and their gene expression profile showed aberrant mitochondrial biogenesis. Myotube gene expression analysis further revealed altered lipid metabolism in calpain-3-deficient muscle. Mitochondrial defects were validated in vitro and in vivo. We used GW501516 to improve mitochondrial biogenesis in vivo in 7-month-old calpain-3-deficient mice. This treatment improved satellite cell activity as indicated by increased MyoD and Pax7 mRNA expression. It also decreased muscle fatigability and reduced serum creatine kinase levels. The decreased mitochondrial function also impaired sarcolemmal repair in the calpain-3-deficient skeletal muscle. Improving mitochondrial activity by acute pyruvate treatment improved sarcolemmal repair. CONCLUSION: Our results provide evidence that calpain-3 deficiency in the skeletal muscle is associated with poor mitochondrial biogenesis and function resulting in poor sarcolemmal repair. Addressing this deficit by drugs that improve mitochondrial activity offers new therapeutic avenues for LGMD2A.


Assuntos
Calpaína/metabolismo , Mitocôndrias Musculares/metabolismo , Proteínas Musculares/metabolismo , Animais , Calpaína/genética , Linhagem Celular , Células Cultivadas , Mutação com Perda de Função , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Musculares/patologia , Proteínas Musculares/genética , Proteína MyoD/genética , Proteína MyoD/metabolismo , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Mioblastos/patologia , Biogênese de Organelas , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , PPAR delta/agonistas , Tiazóis/farmacologia
2.
Am J Physiol Cell Physiol ; 312(3): C209-C221, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28003225

RESUMO

Over the last several years, converging lines of evidence have indicated that miR-206 plays a pivotal role in promoting muscle differentiation and regeneration, thereby potentially impacting positively on the progression of neuromuscular disorders, including Duchenne muscular dystrophy (DMD). Despite several studies showing the regulatory function of miR-206 on target mRNAs in skeletal muscle cells, the effects of overexpression of miR-206 in dystrophic muscles remain to be established. Here, we found that miR-206 overexpression in mdx mouse muscles simultaneously targets multiple mRNAs and proteins implicated in satellite cell differentiation, muscle regeneration, and at the neuromuscular junction. Overexpression of miR-206 also increased the levels of several muscle-specific mRNAs/proteins, while enhancing utrophin A expression at the sarcolemma. Finally, we also observed that the increased expression of miR-206 in dystrophin-deficient mouse muscle decreased the production of proinflammatory cytokines and infiltration of macrophages. Taken together, our results show that miR-206 acts as a pleiotropic regulator that targets multiple key mRNAs and proteins expected to provide beneficial adaptations in dystrophic muscle, thus highlighting its therapeutic potential for DMD.


Assuntos
Adaptação Fisiológica , Citocinas/metabolismo , Macrófagos/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Animais , Regulação da Expressão Gênica , Macrófagos/patologia , Masculino , Camundongos , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Ligação Proteica , Distribuição Tecidual
3.
Cancer Res ; 74(24): 7344-56, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25336187

RESUMO

Cachexia is a muscle-wasting syndrome that contributes significantly to morbidity and mortality of many patients with advanced cancers. However, little is understood about how the severe loss of skeletal muscle characterizing this condition occurs. In the current study, we tested the hypothesis that the muscle protein myostatin is involved in mediating the pathogenesis of cachexia-induced muscle wasting in tumor-bearing mice. Myostatin gene inactivation prevented the severe loss of skeletal muscle mass induced in mice engrafted with Lewis lung carcinoma (LLC) cells or in Apc(Min) (/+) mice, an established model of colorectal cancer and cachexia. Mechanistically, myostatin loss attenuated the activation of muscle fiber proteolytic pathways by inhibiting the expression of atrophy-related genes, MuRF1 and MAFbx/Atrogin-1, along with autophagy-related genes. Notably, myostatin loss also impeded the growth of LLC tumors, the number and the size of intestinal polyps in Apc(Min) (/+) mice, thus strongly increasing survival in both models. Gene expression analysis in the LLC model showed this phenotype to be associated with reduced expression of genes involved in tumor metabolism, activin signaling, and apoptosis. Taken together, our results reveal an essential role for myostatin in the pathogenesis of cancer cachexia and link this condition to tumor growth, with implications for furthering understanding of cancer as a systemic disease.


Assuntos
Caquexia/genética , Carcinoma Pulmonar de Lewis/genética , Atrofia Muscular/genética , Miostatina/genética , Animais , Caquexia/complicações , Caquexia/patologia , Carcinoma Pulmonar de Lewis/complicações , Carcinoma Pulmonar de Lewis/patologia , Inativação Gênica , Humanos , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/complicações , Atrofia Muscular/patologia , Miostatina/antagonistas & inibidores
4.
Skelet Muscle ; 2(1): 16, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22908954

RESUMO

BACKGROUND: Duchenne muscular dystrophy is a genetic disease involving a severe muscle wasting that is characterized by cycles of muscle degeneration/regeneration and culminates in early death in affected boys. Mitochondria are presumed to be involved in the regulation of myoblast proliferation/differentiation; enhancing mitochondrial activity with exercise mimetics (AMPK and PPAR-delta agonists) increases muscle function and inhibits muscle wasting in healthy mice. We therefore asked whether metabolic remodeling agents that increase mitochondrial activity would improve muscle function in mdx mice. METHODS: Twelve-week-old mdx mice were treated with two different metabolic remodeling agents (GW501516 and AICAR), separately or in combination, for 4 weeks. Extensive systematic behavioral, functional, histological, biochemical, and molecular tests were conducted to assess the drug(s)' effects. RESULTS: We found a gain in body and muscle weight in all treated mice. Histologic examination showed a decrease in muscle inflammation and in the number of fibers with central nuclei and an increase in fibers with peripheral nuclei, with significantly fewer activated satellite cells and regenerating fibers. Together with an inhibition of FoXO1 signaling, these results indicated that the treatments reduced ongoing muscle damage. CONCLUSIONS: The three treatments produced significant improvements in disease phenotype, including an increase in overall behavioral activity and significant gains in forelimb and hind limb strength. Our findings suggest that triggering mitochondrial activity with exercise mimetics improves muscle function in dystrophin-deficient mdx mice.

5.
PLoS One ; 5(1): e8637, 2010 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-20072609

RESUMO

BACKGROUND: Mitochondria can sense signals linked to variations in energy demand to regulate nuclear gene expression. This retrograde signaling pathway is presumed to be involved in the regulation of myoblast proliferation and differentiation. Rhabdomyosarcoma cells are characterized by their failure to both irreversibly exit the cell cycle and complete myogenic differentiation. However, it is currently unknown whether mitochondria are involved in the failure of rhabdomyosarcoma cells to differentiate. METHODOLOGY/PRINCIPAL FINDINGS: Mitochondrial biogenesis and metabolism were studied in rat L6E9 myoblasts and R1H rhabdomyosacoma cells during the cell cycle and after 36 hours of differentiation. Using a combination of flow cytometry, polarographic and molecular analyses, we evidenced a marked decrease in the cardiolipin content of R1H cells cultured in growth and differentiation media, together with a significant increase in the content of mitochondrial biogenesis factors and mitochondrial respiratory chain proteins. Altogether, these data indicate that the mitochondrial inner membrane composition and the overall process of mitochondrial biogenesis are markedly altered in R1H cells. Importantly, the dysregulation of protein-to-cardiolipin ratio was associated with major deficiencies in both basal and maximal mitochondrial respiration rates. This deficiency in mitochondrial respiration probably contributes to the inability of R1H cells to decrease mitochondrial H2O2 level at the onset of differentiation. CONCLUSION/SIGNIFICANCE: A defect in the regulation of mitochondrial biogenesis and mitochondrial metabolism may thus be an epigenetic mechanism that may contribute to the tumoral behavior of R1H cells. Our data underline the importance of mitochondria in the regulation of myogenic differentiation.


Assuntos
Mitocôndrias/metabolismo , Rabdomiossarcoma/metabolismo , Animais , Ciclo Celular , Diferenciação Celular , Linhagem Celular Tumoral , Transporte de Elétrons , Peróxido de Hidrogênio/metabolismo , Microscopia de Fluorescência , Ratos , Rabdomiossarcoma/patologia
6.
Am J Physiol Cell Physiol ; 296(5): C1185-94, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19295176

RESUMO

Mitochondria can sense signals linked to changes in energy demand to affect nuclear gene expression. This retrograde signaling pathway is presumed to be involved in the regulation of myoblast proliferation and differentiation. We have investigated the regulation of mitochondrial biogenesis and production of putative retrograde signaling agents [hydrogen peroxide (H(2)O(2)) and Ca(2+)] during the cell cycle and the onset of differentiation in L6E9 muscle cells. The biosynthesis of cardiolipin and mitochondrial proteins was mainly achieved in S phase, whereas the expression of mitochondrial biogenesis factors [peroxisome proliferator-activated receptor (PPAR)-alpha, PPAR-delta, and neuronal nitric oxide synthase 1] was regularly increased from G(1) to G(2)M phase. In agreement with the increase in mitochondrial membrane potential, mitochondria in S and G(2)M phases have a significantly higher H(2)O(2) level when compared with G(1) phase. By contrast, the onset of differentiation was characterized by a marked reduction in mitochondrial protein expression and mitochondrial H(2)O(2) level. The capacity of mitochondria to release Ca(2+) in response to a metabolic challenge was significantly decreased at the onset of differentiation. Finally, an increase in calmodulin expression in S and G(2)M phases and a transitory increase in phosphorylated nuclear factor of activated T cells (NFAT) c3 in S phase was observed. NFATc3 phosphorylation was markedly decreased at the onset of differentiation. Our data point to functional links between the control of mitochondrial biogenesis and the regulation of the level of retrograde signaling agents during the cell cycle and the onset of differentiation in L6E9 muscle cells.


Assuntos
Cálcio/metabolismo , Mitocôndrias/fisiologia , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Sinalização do Cálcio/fisiologia , Calmodulina/metabolismo , Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Citosol/metabolismo , Peróxido de Hidrogênio/metabolismo , Potencial da Membrana Mitocondrial/fisiologia , Fatores de Transcrição NFATC/metabolismo , Fosforilação/fisiologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...