Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 40(2): 52, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38146029

RESUMO

Escalating proportions of industrially contaminated sites are one of the major catastrophes faced at the present time due to the industrial revolution. The difficulties associated with culturing the microbes, has been circumvent by the direct use of metagenomic analysis of various complex niches. In this study, a metagenomic approach using next generation sequencing technologies was applied to exemplify the taxonomic abundance and metabolic potential of the microbial community residing in Amlakhadi canal, Ankleshwar at two different seasons. All the metagenomes revealed a predominance of Proteobacteria phylum. However, difference was observed within class level where Gammaproteobacteria was relatively high in polluted metagenome in Summer while in Monsoon the abundance shifted to Betaproteobacteria. Similarly, significant statistical differences were obtained while comparing the genera amongst contaminated sites where Serratia, Achromobacter, Stenotrophomonas and Pseudomonas were abundant in summer season and the dominance changed to Thiobacillus, Thauera, Acidovorax, Nitrosomonas, Sulfuricurvum, Novosphingobium, Hyphomonas and Geobacter in monsoon. Further upon functional characterization, the microbiomes revealed the diverse survival mechanisms, in response to the prevailing ecological conditions (such as degradation of aromatic compounds, heavy metal resistance, oxidative stress responses and multidrug resistance efflux pumps, etc.). The results have important implications in understanding and predicting the impacts of human-induced activities on microbial communities inhabiting natural niche and their responses in coping with the fluctuating pollution load.


Assuntos
Betaproteobacteria , Gammaproteobacteria , Microbiota , Humanos , Gammaproteobacteria/genética , Betaproteobacteria/genética , Betaproteobacteria/metabolismo , Estações do Ano , Bactérias/metabolismo , Microbiota/genética , Compostos Orgânicos/metabolismo
5.
Sci Total Environ ; 783: 147094, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34088141

RESUMO

The understanding of sub-surface soil microbial diversity is limited at both saline and hypersaline ecosystems, even though salinity is found to affect the microbial community in aqueous and terrestrial environment. In this study, a phylo-taxonomy analysis as well as the functional characteristics of microbial community of flat salt basin of White Rann of Kachchh (WR), Gujarat, India was performed along the natural salinity gradient. The high throughput sequencing approach has revealed the numerical abundance of bacteria relative to the archaea. Salinity, TOC, EC and sulphate concentration might be the primary driver of the community distribution along the transect at WR. The much anticipated effect of salinity gradient on the microbial composition surprisingly turned out to be more speculative, with little variance in the community composition along the spatial distance of WR. The metabolic pathways involved in energy metabolism (like carbon, nitrogen, sulphur) along with environmental adaptive genes (like osmotic and oxidative stress response, heat and cold shock genes clusters) were abundantly annotated from shot-gun metagenomic study. The carbonic anhydrase harbouring bacteria Bacillus sp. DM4CA1 was isolated from WR, having a catalytic ability for converting the gaseous carbon dioxide in presence of calcium carbonate into calcite at 25 % higher rate as compared to non-harbouring strains. The enzyme has a role in multiple alternative pathways in microbial metabolism. With the array of results obtained, the study could become the new reference for understanding the diversity structure and functional characteristics of the microbial community of terrestrial saline environment.


Assuntos
Archaea , Bactérias , Archaea/genética , Bactérias/genética , Índia , Filogenia , RNA Ribossômico 16S , Salinidade , Microbiologia do Solo
6.
Arch Microbiol ; 203(6): 3591-3604, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33966089

RESUMO

A novel bacterial strain designated as ADMK78T was isolated from the saline desert soil. The cells were rod-shaped, Gram-stain-negative, and non-motile. The strain ADMK78T grows best at 28 °C. Phylogeny of 16S rRNA gene placed the strain ADMK78T with the members of genera Ciceribacter and Rhizobium, while the highest sequence similarity was with Rhizobium wuzhouense W44T (98.7%) and Rhizobium ipomoeae shin9-1 T (97.9%). Phylogenetic analysis based on 92 core-genes extracted from the genome sequences and average amino acid identity (AAI) revealed that the strain ADMK78T forms a distinct cluster including five species of Rhizobium, which is separate from the cluster of the genera Rhizobium and Ciceribacter. We propose re-classification of Rhizobium ipomoeae, R. wuzhouense, R. rosettiformans and R. rhizophilum into the novel genus Peteryoungia. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values of ADMK78T were less than 82 and 81%, respectively, among all type strains included in the genus Peteryoungia. The strain ADMK78T showed differences in physiological, phenotypic, and protein profiles estimated by MALDI-TOF MS to its closest relatives. Based on the phenotypic, chemotaxonomic properties, and phylogenetic analyses, the strain ADMK78T represents a novel species, Peteryoungia desertarenae sp. nov. The type strain is ADMK78T (= MCC 3400T; KACC 21383T; JCM 33657T). We also proposed the reclassification of Rhizobium daejeonense, R. naphthalenivorans and R. selenitireducens, into the genus Ciceribacter, based on core gene phylogeny and AAI values.


Assuntos
Rhizobiaceae/classificação , Filogenia , RNA Ribossômico 16S/genética , Rhizobiaceae/genética , Rhizobium/classificação , Microbiologia do Solo
7.
Front Microbiol ; 11: 562813, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224110

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are widespread across the globe mainly due to long-term anthropogenic sources of pollution. The inherent properties of PAHs such as heterocyclic aromatic ring structures, hydrophobicity, and thermostability have made them recalcitrant and highly persistent in the environment. PAH pollutants have been determined to be highly toxic, mutagenic, carcinogenic, teratogenic, and immunotoxicogenic to various life forms. Therefore, this review discusses the primary sources of PAH emissions, exposure routes, and toxic effects on humans, in particular. This review briefly summarizes the physical and chemical PAH remediation approaches such as membrane filtration, soil washing, adsorption, electrokinetic, thermal, oxidation, and photocatalytic treatments. This review provides a detailed systematic compilation of the eco-friendly biological treatment solutions for remediation of PAHs such as microbial remediation approaches using bacteria, archaea, fungi, algae, and co-cultures. In situ and ex situ biological treatments such as land farming, biostimulation, bioaugmentation, phytoremediation, bioreactor, and vermiremediation approaches are discussed in detail, and a summary of the factors affecting and limiting PAH bioremediation is also discussed. An overview of emerging technologies employing multi-process combinatorial treatment approaches is given, and newer concepts on generation of value-added by-products during PAH remediation are highlighted in this review.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...