Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Biol Ther ; 25(1): 2317999, 2024 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-38445632

RESUMO

Rectal cancer accounts for the second highest cancer-related mortality, which is predominant in Western civilizations. The treatment for rectal cancers includes surgery, radiotherapy, chemotherapy, and immunotherapy. Radiotherapy, specifically external beam radiation therapy, is the most common way to treat rectal cancer because radiation not only limits cancer progression but also significantly reduces the risk of local recurrence. However, therapeutic radiation-induced radioresistance to rectal cancer cells and toxicity to normal tissues are major drawbacks. Therefore, understanding the mechanistic basis of developing radioresistance during and after radiation therapy would provide crucial insight to improve clinical outcomes of radiation therapy for rectal cancer patients. Studies by various groups have shown that radiotherapy-mediated changes in the tumor microenvironment play a crucial role in developing radioresistance. Therapeutic radiation-induced hypoxia and functional alterations in the stromal cells, specifically tumor-associated macrophage (TAM) and cancer-associated fibroblasts (CAF), play a crucial role in developing radioresistance. In addition, signaling pathways, such as - the PI3K/AKT pathway, Wnt/ß-catenin signaling, and the hippo pathway, modulate the radiation responsiveness of cancer cells. Different radiosensitizers, such as small molecules, microRNA, nanomaterials, and natural and chemical sensitizers, are being used to increase the effectiveness of radiotherapy. This review highlights the mechanism responsible for developing radioresistance of rectal cancer following radiotherapy and potential strategies to enhance the effectiveness of radiotherapy for better management of rectal cancer.


Assuntos
Fibroblastos Associados a Câncer , MicroRNAs , Segunda Neoplasia Primária , Neoplasias Retais , Humanos , Fosfatidilinositol 3-Quinases , Neoplasias Retais/radioterapia , Imunoterapia , Microambiente Tumoral
2.
Dig Dis Sci ; 68(8): 3220-3236, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37277647

RESUMO

INTRODUCTION: Tumor cells invade and spread through a procedure termed as epithelial-to-mesenchymal cell transition (EMT). EMT is triggered by any alterations in the genes that encode the extracellular matrix (ECM) proteins, the enzymes that break down the ECM, and the activation of the genes that causes the epithelial cell to change into a mesenchymal type. The transcription factors NF-κB, Smads, STAT3, Snail, Zeb, and Twist are activated by inflammatory cytokines, for instance, Tumor Necrosis Factor, Tumor Growth Factors, Interleukin-1, Interleukin-8, and Interleukin-6, which promotes EMT. MATERIALS: The current piece of work has been reviewed from the literature works published in last 10 years on the role interleukins in inflammation-mediated tumor immune microenvironment modulation in colorectal cancer pathogenesis utilizing the databases like Google Scholar, PubMed, Science Direct. RESULTS: Recent studies have demonstrated that pathological situations, such as epithelial malignancies, exhibit EMT characteristics, such as the downregulation of epithelial markers and the overexpression of mesenchymal markers. Several growing evidence have also proved its existence in the human colon during the carcinogenesis of colorectal cancer. Most often, persistent inflammation is thought to be one factor contributing to the initiation of human cancers, such as colorectal cancer (CRC). Therefore, according to epidemiologic and clinical research, people with ulcerative colitis and Crohn's disease have a greater probability of developing CRC. CONCLUSION: A substantial amount of data points to the involvement of the NF-κB system, SMAD/STAT3 signaling cascade, microRNAs, and the Ras-mitogen-activated protein kinase/Snail/Slug in the epithelial-to-mesenchymal transition-mediated development of colorectal malignancies. As a result, EMT is reported to play an active task in the pathogenesis of colorectal cancer, and therapeutic interventions targeting the inflammation-mediated EMT might serve as a novel strategy for treating CRC. The illustration depicts the relationship between interleukins and their receptors as a driver of CRC development and the potential therapeutic targets.


Assuntos
Neoplasias Colorretais , NF-kappa B , Humanos , NF-kappa B/metabolismo , Neoplasias Colorretais/patologia , Fatores de Transcrição/metabolismo , Inflamação , Transição Epitelial-Mesenquimal/genética , Interleucinas , Linhagem Celular Tumoral , Microambiente Tumoral
3.
Regen Med ; 15(12): 2361-2378, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33471558

RESUMO

Extracellular vesicles (EVs) have attracted great attention due to their known role in facilitating intercellular communication in a diverse range of cellular processes. In the 30 years since the discovery of exosomes, a class of EV, they have gone from being considered a cellular waste disposal mechanism to an important aspect of cell-to-cell communication. The exponential interest in exosomes in recent years is due to their key role in health and disease and their potential clinical application in therapy and diagnosis. This review aims to provide an updated picture of the sources, isolation methods, therapeutic outcomes and current application of EVs, in particular exosomes.


Assuntos
Exossomos , Vesículas Extracelulares , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...