Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biotechnol J ; 7(12): 1496-508, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23070975

RESUMO

Integrated and continuous processing of recombinant proteins offers several advantages over batch or semi-batch processing used traditionally in the biotechnology industry. This paper presents a theoretical and practical approach for designing a periodic counter-current chromatography (PCC) operation as a continuous capture purification step that is integrated with a perfusion cell culture process. The constraints for continuous and optimal PCC operation govern the selection of residence time and number of columns. The flexibility available in PCC design for selection of these parameters is dictated by the binding characteristics of the target protein on the capture resin. Using an empirical model for the protein breakthrough curve, analytical solutions to determine these conditions were derived and verified with experimental results for three different proteins: two relatively unstable proteins (recombinant enzymes) and a relatively stable protein (monoclonal antibody). The advantages of a continuous downstream capture step are highlighted for the three case studies in comparison with the existing batch chromatography processes. The use of PCC leads to improvements in process economics due to higher resin capacity utilization and correspondingly lower buffer consumption. Furthermore, integrated and continuous bioprocessing results in a smaller facility footprint by elimination of harvest hold vessels and clarification, as well as by reducing the capture column size by one to two orders of magnitude.


Assuntos
Biotecnologia/métodos , Distribuição Contracorrente/métodos , Proteínas Recombinantes/isolamento & purificação , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Células CHO , Distribuição Contracorrente/instrumentação , Cricetinae , Cricetulus , Enzimas/química , Enzimas/isolamento & purificação , Proteínas Recombinantes/química , Projetos de Pesquisa
2.
Biotechnol Bioeng ; 109(12): 3018-29, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22729761

RESUMO

In the current environment of diverse product pipelines, rapidly fluctuating market demands and growing competition from biosimilars, biotechnology companies are increasingly driven to develop innovative solutions for highly flexible and cost-effective manufacturing. To address these challenging demands, integrated continuous processing, comprised of high-density perfusion cell culture and a directly coupled continuous capture step, can be used as a universal biomanufacturing platform. This study reports the first successful demonstration of the integration of a perfusion bioreactor and a four-column periodic counter-current chromatography (PCC) system for the continuous capture of candidate protein therapeutics. Two examples are presented: (1) a monoclonal antibody (model of a stable protein) and (2) a recombinant human enzyme (model of a highly complex, less stable protein). In both cases, high-density perfusion CHO cell cultures were operated at a quasi-steady state of 50-60 × 10(6) cells/mL for more than 60 days, achieving volumetric productivities much higher than current perfusion or fed-batch processes. The directly integrated and automated PCC system ran uninterrupted for 30 days without indications of time-based performance decline. The product quality observed for the continuous capture process was comparable to that for a batch-column operation. Furthermore, the integration of perfusion cell culture and PCC led to a dramatic decrease in the equipment footprint and elimination of several non-value-added unit operations, such as clarification and intermediate hold steps. These findings demonstrate the potential of integrated continuous bioprocessing as a universal platform for the manufacture of various kinds of therapeutic proteins.


Assuntos
Reatores Biológicos , Biotecnologia/instrumentação , Biotecnologia/métodos , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Proteínas Recombinantes/biossíntese , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/metabolismo , Células CHO , Contagem de Células , Distribuição Contracorrente , Cricetinae , Cricetulus , Enzimas/biossíntese , Enzimas/química , Enzimas/isolamento & purificação , Enzimas/metabolismo , Humanos , Modelos Biológicos , Perfusão , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
4.
J Am Chem Soc ; 131(35): 12528-9, 2009 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-19722714

RESUMO

Nanofibers of polyaniline and oligoanilines of controlled molecular weight, e.g., tetraaniline, octaaniline, and hexadecaaniline, are synthesized using a versatile high ionic strength aqueous system that permits the use of H(2)O(2) with no added catalysts as a mild oxidizing agent. Films of oligoanilines deposited on plastic substrates show a robust and reversible chemiresistor response to NO(2) vapor at room temperature in ambient air (100-5 ppm).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA