Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38279305

RESUMO

Vitamin D is known to have a positive effect on bone health. Despite the greater frequency of vitamin D deficiency in African Americans (AA), they have a higher bone mineral density (BMD) compared to whites, demonstrating a disconnect between BMD and vitamin D levels in AA. Another intriguing relationship seen in AA is the triglyceride (TG) paradox, an unusual phenomenon in which a normal TG status is observed even when patients house conditions known to be characterized by high TG levels, such as Type II diabetes. To the best of our knowledge, no study has examined whether these two paradoxical relationships exist simultaneously in AA subjects with Type II diabetes. In this study, we compared levels of blood markers, including HbA1c, TG, and vitamin D, measured as serum 25-hydroxyvitamin D [25(OH)VD] µM/mL, [25(OH)VD]/TG, calcium, and BMD in AA (n = 56) and white (n = 26) subjects with Type II diabetes to see whether these relationships exist concurrently. We found that AA subjects had significantly lower TG and [25(OH)VD] levels and a significantly higher BMD status compared to white subjects, even when the ages, BMI, duration of diabetes, HbA1c, and calcium levels were similar between the two groups. This demonstrates that these two paradoxical relationships exist simultaneously in Type II diabetic AA subjects. In addition to these findings, we discuss the current hypotheses in the literature that attempt to explain why these two intriguing relationships exist. This review also discusses four novel hypotheses, such as altered circulating levels and the potential role of estrogen and hydrogen sulfide on BMD and HMG-CoA reductase as a possible contributor to the TG paradox in AA subjects. This manuscript demonstrates that there are still many unanswered questions regarding these two paradoxical relationships and further research is needed to determine why they exist and how they can be implemented to improve healthcare.


Assuntos
Diabetes Mellitus Tipo 2 , Deficiência de Vitamina D , Humanos , Densidade Óssea , Estudos Transversais , Cálcio , Negro ou Afro-Americano , Hemoglobinas Glicadas , Vitamina D , Vitaminas , Hormônio Paratireóideo
2.
Antioxid Redox Signal ; 40(10-12): 663-678, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37756366

RESUMO

Significance: Excess oxidative stress and neuroinflammation are risk factors in the onset and progression of Alzheimer's disease (AD) and its association with amyloid-ß plaque accumulation. Oxidative stress impairs acetylcholine (ACH) and N-methyl-d-aspartate receptor signaling in brain areas that function in memory and learning. Glutathione (GSH) antioxidant depletion positively correlates with the cognitive decline in AD subjects. Treatments that upregulate GSH and ACH levels, which simultaneously decrease oxidative stress and inflammation, may be beneficial for AD. Recent Advances: Some clinical trials have shown a benefit of monotherapy with vitamin D (VD), whose deficiency is linked to AD or with l-cysteine (LC), a precursor of GSH biosynthesis, in reducing mild cognitive impairment. Animal studies have shown a simultaneous decrease in ACH esterase (AChE) and increase in GSH; combined supplementation with VD and LC results in a greater decrease in oxidative stress and inflammation, and increase in GSH levels compared with monotherapy with VD or LC. Therefore, cosupplementation with VD and LC has the potential of increasing GSH, downregulation of oxidative stress, and decreased inflammation and AChE levels. Future Directions: Clinical trials are needed to determine whether safe low-cost dietary supplements, using combined VD+LC, have the potential to alleviate elevated AChE, oxidative stress, and inflammation levels, thereby halting the onset of AD. Goal of Review: The goal of this review is to highlight the pathological hallmarks and current Food and Drug Administration-approved treatments for AD, and discuss the potential therapeutic effect that cosupplementation with VD+LC could manifest by increasing GSH levels in patients. Antioxid. Redox Signal. 40, 663-678.


Assuntos
Doença de Alzheimer , Vitamina D , Animais , Humanos , Vitamina D/farmacologia , Vitamina D/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Cisteína , Vitaminas , Estresse Oxidativo , Glutationa/metabolismo , Suplementos Nutricionais , Inflamação/tratamento farmacológico , Acetilcolina/farmacologia
3.
Free Radic Biol Med ; 209(Pt 1): 185-190, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37866755

RESUMO

The incidence of Alzheimer's disease (AD) is higher in people over the age of 65 and in African Americans (AA). Elevated acetylcholinesterase (AChE) activity has been considered a major player in the onset of AD symptoms. As a result, many FDA-approved AD drugs target AChE inhibition to treat AD patients. Hydrogen sulfide (H2S) is a signaling molecule known to downregulate oxidative stress and inflammation. The neutrophil-to-lymphocyte ratio (NLR) in the blood is widely used as a biomarker to monitor inflammation and immunity. This study examined the hypothesis that plasma AChE levels have a negative association with H2S levels and that a positive association exists between levels of NLR, HbA1c, and ROS with the AChE in the peripheral blood. The fasting blood sample was taken from 114 African Americans who had provided written informed consent approved by the IRB. The effect of H2S and high-glucose treatment on AChE activity levels was also investigated in THP-1 human monocytes. There was a significant negative relationship between AChE and the levels of H2S (r = -0.41, p = 0.001); a positive association between the levels of AChE with age (r = 0.26, p = 0.03), NLR (r = 0.23, p = 0.04), ROS (r = 0.23, p = 0.04) and HbA1c levels (r = 0.24, p = 0.04), in AA subjects. No correlation was seen between blood levels of AChE and acetylcholine (ACh). Blood creatinine had a negative correlation (r = -0.23, p = 0.04) with ACh levels. There was a significant effect of H2S on AChE inhibition and of high glucose in upregulating AChE activity in cultured monocytes. This study suggests hyperglycemia and lower H2S status can contribute to an increase in the AChE activity levels. Future clinical studies are needed to examine the potential benefits of supplementation with hydrogen sulfide pro-drugs/compounds in reducing the AChE and the cognitive dysfunctions associated with AD.


Assuntos
Doença de Alzheimer , Sulfeto de Hidrogênio , Humanos , Sulfeto de Hidrogênio/farmacologia , Acetilcolinesterase/metabolismo , Hemoglobinas Glicadas , Monócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima , Neutrófilos/metabolismo , Negro ou Afro-Americano/genética , Doença de Alzheimer/tratamento farmacológico , Sulfetos , Linfócitos/metabolismo , Inflamação/tratamento farmacológico , Glucose
4.
Curr Med Res Opin ; 39(2): 205-217, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36537177

RESUMO

Each cell controls when and how its genes must be expressed for proper function. Every function in a cell is driven by signaling molecules through various regulatory cascades. Different cells in a multicellular organism may express very different sets of genes, even though they contain the same DNA. The set of genes expressed in a cell determines the set of proteins and functional RNAs it contains, giving it its unique properties. Malfunction in gene expression harms the cell and can lead to the development of various disease conditions. The use of rapid high-throughput gene expression profiling unravels the complexity of human disease at various levels. Peripheral blood mononuclear cells (PBMC) have been used frequently to understand gene expression homeostasis in various disease conditions. However, more studies are required to validate whether PBMC gene expression patterns accurately reflect the expression of other cells or tissues. Vitamin D, which is responsible for a multitude of health consequences, is also an immune modulatory hormone with major biological activities in the innate and adaptive immune systems. Vitamin D exerts its diverse biological effects in target tissues by regulating gene expression and its deficiency, is recognized as a public health problem worldwide. Understanding the genetic factors that affect vitamin D has the potential benefit that it will make it easier to identify individuals who require supplementation. Different technological advances in gene expression can be used to identify and assess the severity of disease and aid in the development of novel therapeutic interventions. This review focuses on different gene expression approaches and various clinical studies of vitamin D to investigate the role of gene expression in identifying the molecular signature of the disease.


Gene optimizations are essential in maintaining biological functions. Gene dysregulation results in disease progression. Advanced analytical techniques determine the link between impaired genes and disease conditions. This knowledge can be applied to design clinical trials to aid novel therapeutic interventions and disease prevention.


Assuntos
Deficiência de Vitamina D , Vitamina D , Humanos , Vitamina D/genética , Leucócitos Mononucleares/metabolismo , Perfilação da Expressão Gênica , Expressão Gênica
5.
Nutrients ; 14(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36235544

RESUMO

CONTEXT: Population studies have shown a trend in decreasing vitamin C status and increasing prevalence of osteoporosis in patients with diabetes and non-diabetic people. Dietary vitamin C consumption is linked to improvement in bone mineral density (BMD) in epidemiological studies. VCAM-1 and adiponectin are known to activate osteoclasts, which increase bone loss. AIM: This study examined whether there is any association between the circulating level of vitamin C and BMD and whether the beneficial effect of vitamin C on BMD was linked to a simultaneous decrease in circulating levels of adiponectin and VCAM-1 in subjects with diabetes. METHODS: Patients with diabetes (T2D, n = 74) and age-matched non-diabetic controls (n = 26) were enrolled in this study. Fasting blood levels of glycemia, adiponectin, VCAM-1, inflammation biomarkers, and vitamin C were determined in both groups. The BMD of the lumbar spine (L1-L4), left femur, and right femur was determined using a DXA scan in subjects with diabetes. RESULTS: Patients with diabetes had lower levels of vitamin C and higher levels of VCAM-1 and inflammatory cytokines. There was a significant positive association between vitamin C blood levels and lumbar spine BMD as well as a significant negative association between total adiponectin and VCAM-1 levels with that of vitamin C and lumbar BMD in patients with diabetes. Total adiponectin and VCAM-1 also showed a negative association with BMD of both the right and left femurs. The inter-relationship among the circulating levels of vitamin C and VCAM-1 and BMD was strong and is a novel finding. CONCLUSIONS: This study reports a positive association of circulating vitamin C levels and the BMD and that the beneficial effects of vitamin C on BMD could be linked to a simultaneous lowering in circulating VCAM-1 and total adiponectin levels. Thus, dietary vitamin C consumption has potential to lower inflammation and the risk of osteoporosis in subjects with diabetes.


Assuntos
Diabetes Mellitus , Osteoporose , Absorciometria de Fóton , Adiponectina , Ácido Ascórbico , Biomarcadores , Densidade Óssea/fisiologia , Citocinas , Humanos , Inflamação , Vértebras Lombares , Osteoporose/etiologia , Molécula 1 de Adesão de Célula Vascular , Vitaminas
6.
Antioxidants (Basel) ; 11(7)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35883859

RESUMO

Irisin, a novel myokine, is secreted by the muscle following proteolytic cleavage of fibronectin type III domain containing 5 (FNDC5) and is considered a novel regulator of glucose homeostasis. Cystathionine γ-lyase (CSE) produces hydrogen sulfide (H2S) and is involved in glucose homeostasis. We examined the hypothesis that H2S deficiency leads to decreased FNDC5 and irisin secretion, and thereby alters glucose metabolism. High-fat diet-fed mice exhibited elevated blood glucose and significantly reduced levels of CSE, H2S, and PGC-1α, with decreased FNDC5/irisin levels and increased oxidative stress in the muscle compared with those of normal diet-fed mice (control). High glucose or palmitate decreases CSE/PGC-1α/FNDC5 levels and glucose uptake in myotubes. Inhibitors (propargylglycine and aminooxyacetate) of H2S producing enzymes or CSE siRNA significantly decreased levels of H2S and FNDC5 along with PGC-1α; similar H2S-deficient conditions also resulted in decreased GLUT4 and glucose uptake. The levels of H2S, PGC-1α, and FNDC5 and glucose uptake were significantly upregulated after treatment with l-cysteine or an H2S donor. Myoblast differentiation showed upregulation of PGC-1α and FNDC5, which was consistent with the increased expression of CSE/H2S. These findings suggest that the upregulation of H2S levels can have beneficial effects on glucose homeostasis via activation of the PGC-1α/FNDC5/irisin signaling pathway.

7.
J Am Coll Nutr ; 40(4): 327-332, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33596158

RESUMO

Objective: Vitamin D deficiency is common in the general population and diabetic patients, and supplementation with vitamin D is widely used to help lower oxidative stress and inflammation. The cytokine storm in SARS-CoV2 infection has been linked with both diabetes and Vitamin D deficiency. This study examined the hypothesis that supplementation with vitamin D, in combination with l-cysteine (LC), is better at reducing oxidative stress and thereby, more effective, at inhibiting the secretion of the pro-inflammatory cytokines, Interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1) in U937 monocytes exposed to high glucose concentrations. Methods: U937 monocytes were pretreated with 1,25 (OH)2 vitamin D (VD, 10 nM) or LC (250 µM) or VD + LC for 24 h and then exposed to control or high glucose (HG, 25 mM) for another 24 h. Results: There were significantly greater reactive oxygen species (ROS) levels in monocytes treated with HG than those in controls. Combined supplementation with VD and LC showed a more significant reduction in ROS (46%) in comparison with treatment with LC (19%) or VD (26%) alone in monocytes exposed to HG. Similarly, VD supplementation, together with LC, caused a more significant inhibition in the secretion of IL-8 (36% versus 16%) and MCP-1 (46% versus 26%) in comparison with that of VD (10 nM) alone in high-glucose treated monocytes. Conclusions: These results suggest that combined supplementation with vitamin D and LC has the potential to be more effective than either VD or LC alone in lowering the risk of oxidative stress and inflammation associated with type 2 diabetes or COVID-19 infection. Further, this combined vitamin D with LC/N-acetylcysteine may be a potent alternative therapy for SARS-CoV2 infected subjects. This approach can prevent cellular damage due to cytokine storm in comorbid systemic inflammatory conditions, such as diabetes, obesity, and hypertension.


Assuntos
Tratamento Farmacológico da COVID-19 , Cisteína/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , SARS-CoV-2/imunologia , Vitamina D/administração & dosagem , COVID-19/imunologia , Quimiocina CCL2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Suplementos Nutricionais , Quimioterapia Combinada , Glucose/administração & dosagem , Humanos , Interleucina-8/metabolismo , Monócitos/imunologia , Monócitos/virologia , Células U937 , Deficiência de Vitamina D/tratamento farmacológico , Deficiência de Vitamina D/imunologia , Deficiência de Vitamina D/virologia
9.
J Am Coll Nutr ; 40(2): 98-103, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32275481

RESUMO

Introduction: Reduced circulating levels of 25(OH)VD are associated with an increased incidence of chronic lung diseases. Alpha-1-antitrypsin (AAT) is needed to maintain healthy lung function.Objective: This study examined the hypothesis that circulating levels of AAT are lower in adult type 2 diabetic patients and that a positive association exists between circulating AAT levels and 25(OH)VD levels in these patients.Methods: Fasting blood was obtained after written informed consent from type 2 diabetic patients (n = 80) and normal siblings or volunteers (n = 22) attending clinics at LSUHSC according to the protocol approved by the Institutional Review Board for Human studies. Plasma AAT and 25(OH)VD levels were determined using ELISA kits. HbA1c levels and chemistry profiles were analyzed at the clinical laboratory of LSUHSC hospital.Results: ATT and 25(OH)VD levels were significantly lower in type 2 diabetic patients compared with those of age-matched healthy controls. There was a significant positive correlation between 25(OH)VD and ATT deficiency. AAT levels showed significant positive correlation with HDL cholesterol levels in type 2 diabetic patients. There was no correlation between AAT levels and those of HbA1c or with the duration of diabetes of T2D patients.Conclusions: These results suggest that 25(OH)VD deficiency may predispose type 2 diabetic patients to AAT deficiency. Whether reduced levels of circulating AAT indeed contribute to the increased risk for lung dysfunction in subjects with type 2 diabetes needs further investigation.


Assuntos
Diabetes Mellitus Tipo 2 , Deficiência de Vitamina D , Vitamina D/sangue , alfa 1-Antitripsina/sangue , Adulto , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/sangue , Jejum , Humanos , Vitaminas
10.
Nutrients ; 12(11)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33171932

RESUMO

Vitamin D (VD) deficiency is associated with musculoskeletal disorders. This study examines whether co-supplementation of l-cysteine (LC) and VD is better than monotherapy with LC or VD at alleviating musculoskeletal dyshomeostasis in the skeletal muscle of VD-deficient high-fat diet (HFD-VD-) fed mice. Mice were fed a healthy diet or an HFD; for VD-deficient animals, the mice were maintained on a HFD-VD-diet (16 weeks); after the first 8 weeks, the HFD-VD-diet-fed mice were supplemented for another 8 weeks with LC, VD-alone, or the same doses of LC + VD by oral gavage. Saline and olive oil served as controls. Myotubes were exposed with high-glucose, palmitate, Monocyte Chemoattractant Protein 1 (MCP-1), and Tumor Necrosis Factor (TNF), to mimic the in vivo microenvironment. In vitro deficiencies of glutathione and hydrogen sulfide were induced by knockdown of GCLC and CSE genes. Relative gene expression of biomarkers (myogenic: MyoD, Mef2c, Csrp3; muscle dystrophy: Atrogin1, Murf1, and Myostatin; bone modeling and remodeling: RANK, RANKL, OPG) were analyzed using qRT-PCR. Co-supplementatoin with LC + VD showed beneficial effects on gene expression of myogenic markers and OPG but reduced markers of dystrophy, RANK/RANKL in comparison to LC or VD alone-supplementation. In vitro myotubes treated with glutathione (GSH) precursors also showed a positive effect on OPG and the myogenesis genes, and inhibited RANK/RANKL and muscle-dystrophy markers. This study reveals that the co-supplementation of LC with VD significantly alleviates the markers of musculoskeletal disorders in the skeletal muscle better than monotherapy with LC or VD in HFD-VD-fed mice.


Assuntos
Biomarcadores/metabolismo , Cisteína/uso terapêutico , Dieta Hiperlipídica , Suplementos Nutricionais , Comportamento Alimentar , Doenças Musculoesqueléticas/tratamento farmacológico , Deficiência de Vitamina D/tratamento farmacológico , Vitamina D/uso terapêutico , Animais , Cisteína/farmacologia , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Glutationa/metabolismo , Sulfeto de Hidrogênio/metabolismo , Inflamação/patologia , Masculino , Camundongos Endogâmicos C57BL , Desenvolvimento Muscular/efeitos dos fármacos , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Doenças Musculoesqueléticas/complicações , Doenças Musculoesqueléticas/genética , Enxofre/metabolismo , Vitamina D/farmacologia , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/genética
11.
Int J Mol Sci ; 21(20)2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33050491

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) deficiency, the most common genetic inherited trait among humans, affects ~7% of the global population, and is associated with excess risk of cardiovascular disease (CVD). Transforming growth factor-ß (TGF-ß) regulates immune function, proliferation, epithelial-mesenchymal transition, fibrosis, cancer, and vascular dysfunction. This study examined whether G6PD deficiencies can alter TGF-ß-mediated NADPH oxidases (NOX) and cell adhesion molecules (CAM) in human aortic endothelial cells (HAEC). Results show that treatment with high glucose and the saturated free fatty acid palmitate significantly downregulated G6PD; in contrast, mRNA levels of TGF-ß components, NOX and its activity, and reactive oxygen species (ROS) were significantly upregulated in HAEC. The expression levels of TGF-ß and its receptors, NOX and its activity, and ROS were significantly higher in HG-exposed G6PD-deficient cells (G6PD siRNA) compared to G6PD-normal cells. The protein levels of adhesion molecules (ICAM-1 and VCAM-1) and inflammatory cytokines (MCP-1 and TNF) were significantly increased in HG-exposed G6PD-deficient cells compared to G6PD-normal cells. The adherence of monocytes (SC cells) to HAEC was significantly elevated in HG-treated G6PD-deficient cells compared to control cells. Pharmacological inhibition of G6PD enhances ROS, NOX and its activity, and endothelial monocyte adhesion; these effects were impeded by NOX inhibitors. The inhibition of TGF-ß prevents NOX2 and NOX4 mRNA expression and activity, ROS, and adhesion of monocytes to HAEC. L-Cysteine ethyl ester (cell-permeable) suppresses the mRNA levels of TGF-ß and its receptors, along with NOX2 and NOX4, and decreases NOX activity, ROS, and adhesion of monocytes to HAEC. This suggests that G6PD deficiency promotes TGF-ß/NADPH oxidases/ROS signaling, the expression of ICAM-1 and VCAM-1, and the adhesion of leukocytes to the endothelial monolayer, which can contribute to a higher risk for CVD.


Assuntos
Adesão Celular , Células Endoteliais/metabolismo , Deficiência de Glucosefosfato Desidrogenase/etiologia , Deficiência de Glucosefosfato Desidrogenase/metabolismo , Leucócitos/metabolismo , NADPH Oxidases/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Glicemia , Moléculas de Adesão Celular/metabolismo , Suscetibilidade a Doenças , Glucosefosfato Desidrogenase/metabolismo , Humanos , Leucócitos/imunologia , Monócitos/imunologia , Monócitos/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/antagonistas & inibidores
12.
Free Radic Biol Med ; 161: 84-91, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33038530

RESUMO

There is a marked variation in mortality risk associated with COVID-19 infection in the general population. Low socioeconomic status and other social determinants have been discussed as possible causes for the higher burden in African American communities compared with white communities. Beyond the social determinants, the biochemical mechanism that predisposes individual subjects or communities to the development of excess and serious complications associated with COVID-19 infection is not clear. Virus infection triggers massive ROS production and oxidative damage. Glutathione (GSH) is essential and protects the body from the harmful effects of oxidative damage from excess reactive oxygen radicals. GSH is also required to maintain the VD-metabolism genes and circulating levels of 25-hydroxyvitamin D (25(OH)VD). Glucose-6-phosphate dehydrogenase (G6PD) is necessary to prevent the exhaustion and depletion of cellular GSH. X-linked genetic G6PD deficiency is common in the AA population and predominantly in males. Acquired deficiency of G6PD has been widely reported in subjects with conditions of obesity and diabetes. This suggests that individuals with G6PD deficiency are vulnerable to excess oxidative stress and at a higher risk for inadequacy or deficiency of 25(OH)VD, leaving the body unable to protect its 'oxidative immune-metabolic' physiological functions from the insults of COVID-19. An association between subclinical interstitial lung disease with 25(OH)VD deficiencies and GSH deficiencies has been previously reported. We hypothesize that the overproduction of ROS and excess oxidative damage is responsible for the impaired immunity, secretion of the cytokine storm, and onset of pulmonary dysfunction in response to the COVID-19 infection. The co-optimization of impaired glutathione redox status and excess 25(OH)VD deficiencies has the potential to reduce oxidative stress, boost immunity, and reduce the adverse clinical effects of COVID-19 infection in the AA population.


Assuntos
COVID-19/patologia , Deficiência de Glucosefosfato Desidrogenase/genética , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Deficiência de Vitamina D/genética , Negro ou Afro-Americano/estatística & dados numéricos , COVID-19/mortalidade , Síndrome da Liberação de Citocina/patologia , Glucosefosfato Desidrogenase/genética , Deficiência de Glucosefosfato Desidrogenase/metabolismo , Glutationa/metabolismo , Humanos , SARS-CoV-2 , Vitamina D/análogos & derivados , Vitamina D/metabolismo
13.
J Am Coll Nutr ; 39(8): 694-699, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32659175

RESUMO

Early reports indicate an association between the severity of the COVID-19 infection and the widespread 25-hydroxy vitamin D deficiency known to exist in populations around the world. Vitamin D deficiency is extremely common among African American (AA) communities, where the COVID-19 infection rate is three-fold higher, and the mortality rate nearly six-fold higher, compared with rates in predominantly white communities. COVID-19 infection primarily affects the lungs and airways. Previous reports have linked 25-hydroxy vitamin D deficiency with subclinical interstitial lung disease. AA are at risk for lower cellular glutathione (GSH) levels, and GSH deficiency epigenetically impairs VD biosynthesis pathway genes. Compared with vitamin D alone, co-supplementation of vitamin D and L-cysteine (a GSH precursor) showed a better efficacy in improving levels of GSH and VD-regulatory genes at the cellular/tissue level, increasing 25(OH) vitamin D levels, and reducing inflammation biomarkers in the blood in mice studies. We propose that randomized clinical trials are needed to examine the potential of co-supplementation with anti-inflammatory antioxidants, vitamin D and L-cysteine in correcting the 25(OH)VD deficiency and preventing the 'cytokine storm,' one of the most severe consequences of infection with COVID-19, thereby preventing the adverse clinical effects of COVID-19 infection in the vulnerable AA population.


Assuntos
Negro ou Afro-Americano , Tratamento Farmacológico da COVID-19 , Cisteína/uso terapêutico , Suplementos Nutricionais , Glutationa/metabolismo , Deficiência de Vitamina D/tratamento farmacológico , Vitamina D/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Biomarcadores/sangue , COVID-19/etnologia , COVID-19/metabolismo , COVID-19/mortalidade , Cisteína/farmacologia , Citocinas/metabolismo , Epigênese Genética , Predisposição Genética para Doença , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/prevenção & controle , Camundongos , Vitamina D/análogos & derivados , Vitamina D/sangue , Vitamina D/farmacologia , Deficiência de Vitamina D/etnologia , Deficiência de Vitamina D/metabolismo , Vitaminas/sangue , Vitaminas/farmacologia , Vitaminas/uso terapêutico
15.
Metab Syndr Relat Disord ; 18(1): 10-30, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31618136

RESUMO

Cardiovascular disease (CVD) is the leading cause of fatality and disability worldwide regardless of gender. Obesity has reached epidemic proportions in population across different regions. According to epidemiological studies, CVD risk markers in childhood obesity are one of the significant risk factors for adulthood CVD, but have received disproportionally little attention. This review has examined the evidence for the presence of traditional cardiac biomarkers (nonspecific; lactate dehydrogenase, alanine aminotransferase, aspartate aminotransferase, creatine kinase, myoglobulin, glycogen phosphorylase isoenzyme BB, myosin light chains, ST2, and ischemia-modified albumin) and novel emerging cardiac-specific biomarkers (cardiac troponins, natriuretic peptides, heart-type fatty acid-binding protein, and miRNAs). Besides, noninvasive anatomical and electrophysiological markers (carotid intima-media thickness, coronary artery calcification, and heart rate variability) in CVDs and obesity are also discussed. Modifiable and nonmodifiable risk factors associated with metabolic syndrome in the progression of CVD, such as obesity, diabetes, hypertension, dyslipidemia, oxidative stress, inflammation, and adipocytokines are also outlined. These underlying prognostic risk factors predict the onset of future microvascular and macrovascular complications. The understanding of invasive and noninvasive cardiac-specific biomarkers and the risk factors may yield valuable insights into the pathophysiology and prevention of CVD in a high-risk obese population at an early stage.


Assuntos
Biomarcadores/análise , Doenças Cardiovasculares/genética , Obesidade/genética , Humanos , Prognóstico , Fatores de Risco
16.
Sci Rep ; 9(1): 14784, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31616013

RESUMO

Obesity has been correlating with low levels of glutathione (GSH) and 25-hydroxyvitamin D3 (25(OH)VD3). The liver is the principal site for the 25(OH)VD3 biosynthesis. This study investigated whether GSH deficiency induces epigenetic alterations that impair Vitamin D (VD) metabolism genes in the livers of HFD-fed mice. The expression of the VD metabolism genes CYP2R1 and CYP27A1 (25-hydroxylase), CYP27B1 (1-α-hydroxylase), and vitamin D receptor (VDR) were downregulated in the livers of mice fed an HFD (GSH- deficient) compared with control diet-fed group. The expression of CYP24A1 (24-hydroxylase) was significantly increased, which catabolizes both 25(OH)VD3 and 1α,25-hydroxyvitaminD3. Gene-specific hypermethylation of 25-hydroxylase, 1-α-hydroxylase, and VDR, and hypomethylation of CYP24A1 was observed in HFD-fed mice. GSH deficiency induced in cultured hepatocytes caused an increase in oxidative stress and alterations in VD regulatory genes. Similarly, elevated global DNA methylation, Dnmt activity, and 5-methylcytosine but decreased Tet activity and 5-hydroxymethylcytosine were observed in the GSH-deficient hepatocytes and the liver of HFD-fed mice. Replenishment of GSH by its prodrugs treatment beneficially altered epigenetic enzymes, and VD-metabolism genes in hepatocytes. HFD-induces GSH deficiency and epigenetically alters VD-biosynthesis pathway genes. This provides a biochemical mechanism for the VD-deficiency and potential benefits of GSH treatment in reducing 25(OH)VD3-deficiency.


Assuntos
Calcifediol/biossíntese , Epigênese Genética , Glutationa/deficiência , Obesidade/metabolismo , Deficiência de Vitamina D/etiologia , Animais , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Metilação de DNA , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Regulação para Baixo , Glutationa/administração & dosagem , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Obesos , Obesidade/etiologia , Deficiência de Vitamina D/tratamento farmacológico , Deficiência de Vitamina D/metabolismo
17.
Arch Biochem Biophys ; 672: 108054, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31351068

RESUMO

Hydrogen sulfide (H2S) is an endogenous novel gasotransmitter which is implicated in the pathophysiology of the metabolic syndrome. Core clock genes (CCG) and its controlled genes disruption is implicated in the progression of metabolic syndrome. We examined whether H2S has any effect on CCG in the skeletal muscle of mice fed a high-fat diet (HFD) and in myotubes. In the muscle of HFD-mice, the expression of H2S biosynthesis enzyme genes (CSE, CBS, and 3-Mpst) along with antioxidant genes (GCLC, GCLM, GSS, and GSR) involved in GSH biosynthesis and recycling were reduced significantly, but the oxidative stress (OS) increased. Expression of the CCG (Bmal1, Clock, RORα, Cry2, Per2) and clock-controlled genes (PPARγ, PGC-1α, RXRα) was downregulated, whereas the levels of PPARα mRNA were upregulated. Similar to that in the muscle of HFD-mice, in vitro myotubes exposed to high glucose or palmitate to mimic metabolic syndrome, showed an increased OS and decreased in CSE mRNA, H2S production and CCG mRNA levels were also downregulated. TNF and MCP-1 treatment on the myotubes was similar to that observed in HFD-muscle, with that the Rev-erbα mRNA was upregulated. Inhibition (siRNA/pharmacological inhibitors) of both CSE and GCLC (the rate-limiting enzyme in GSH biosynthesis) decreased H2S, and increased OS; Bmal1 and Clock mRNA levels were downregulated, while Rev-erbα increased significantly in these conditions. CSE KD myotubes were post-treated with an H2S donor partially restored the mRNA levels of core clock genes. These findings report that the deficiencies of H2S/GSH impair expression of CCG and treatment with H2S donor or GSH precursor exert a positive effect over CCG. Thus, suggest that H2S as a new endogenous factor for regulating circadian clock, and its donors could provide a novel chrono-pharmacological therapy to manage metabolic disorders.


Assuntos
Relógios Circadianos/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Dieta Hiperlipídica , Genes/efeitos dos fármacos , Sulfeto de Hidrogênio/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Animais , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Glutationa/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/metabolismo , Regulação para Cima/efeitos dos fármacos
18.
Mol Cell Biochem ; 459(1-2): 151-156, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31172369

RESUMO

L-Cysteine (LC) is an essential precursor of GSH biosynthesis. GSH is a major physiological antioxidant, and its depletion increases oxidative stress. Diabetes is associated with lower blood levels of LC and GSH. The mechanisms leading to a decrease in LC in diabetes are not entirely known. This study reports a significant decrease in LC in human monocytes exposed to high glucose (HG) concentrations as well as in the blood of type 2 diabetic rats. Thus, a significant decrease in the level of LC in response to exposure to HG supports the assertion that uncontrolled hyperglycemia contributes to a reduction of blood levels of LC and GSH seen in diabetic patients. Increased requirement of LC to replace GSH needed to scavenge excess ROS generated by hyperglycemia can result in lower levels of LC and GSH. Animal and human studies report that LC supplementation improves GSH biosynthesis and is beneficial in lowering oxidative stress and insulin resistance. This suggests that hyperglycemia has a direct role in the impairment of LC and GSH homeostasis in diabetes.


Assuntos
Cisteína/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glutationa/metabolismo , Hiperglicemia/metabolismo , Monócitos/metabolismo , Animais , Células Cultivadas , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/patologia , Humanos , Hiperglicemia/patologia , Monócitos/patologia , Ratos , Ratos Zucker , Células U937
19.
Free Radic Biol Med ; 131: 376-381, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30578920

RESUMO

Chronic kidney disease (CKD) is a worldwide public health problem with an estimated prevalence of 8.2%. This study reports glutathione deficiency, excess oxidative stress, and altered vitamin D metabolism in the kidney of mice fed a high-fat diet (HFD). The levels of GCLC and GCLM gene expression were significantly downregulated and the protein carbonylation level, a hallmark of oxidative damage, was significantly increased in the kidney of HFD-fed mice. While the levels of VD-regulatory genes 1-alpha-hydroxylase (CYP27B1), VDR, and RXRα were significantly downregulated in the kidney of mice fed a HFD, those of 24-hydroxylase (CYP24A1) were significantly elevated. In vitro, GSH deficiency per se causes excess oxidative damage (protein carbonylation), and significantly decreases the levels of VD-regulatory genes (CYP27B1, VDR, and RXRα), but increases levels of CYP24A1 in human renal proximal tubule epithelial cells (RPTEC), similar to findings in the kidney of HFD-fed diabetic mice. L-cysteine supplementation restores GSH and prevents oxidative damage in RPTEC. These studies suggest a potential role of GSH precursor in reducing excess oxidative stress and renal injury that commonly accompanies obesity/diabetes.


Assuntos
25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , Diabetes Mellitus Experimental/enzimologia , Glutationa/deficiência , Receptores de Calcitriol/genética , Insuficiência Renal Crônica/enzimologia , Vitamina D3 24-Hidroxilase/genética , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Animais , Cisteína/farmacologia , Diabetes Mellitus Experimental/etiologia , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Dieta Hiperlipídica/efeitos adversos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Regulação da Expressão Gênica , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Humanos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Cultura Primária de Células , Carbonilação Proteica , Receptores de Calcitriol/metabolismo , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Receptor X Retinoide alfa/genética , Receptor X Retinoide alfa/metabolismo , Transdução de Sinais , Vitamina D3 24-Hidroxilase/metabolismo
20.
Arch Biochem Biophys ; 663: 11-21, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30582899

RESUMO

Glucose-6-phosphate dehydrogenase is a major enzyme that supplies the reducing agent nicotinamide adenine dinucleotide phosphate hydrogen (NADPH), which is required to recycle oxidized/glutathione disulfide (GSSH) to reduced glutathione (GSH). G6PD-deficient cells are susceptible to oxidative stress and a deficiency of GSH. Endothelial dysfunction is characterized by the loss of nitric oxide (NO) bioavailability, which regulates leukocyte adhesion to endothelium. G6PD-deficient endothelial cells (EC) demonstrate reduced expression of endothelial nitric oxide synthase (eNOS) and NO levels along with reduced GSH. Whether G6PD deficiency plays any role in EC dysfunction is unknown. The chronic inflammation commonly seen in those with metabolic syndrome, characterized by elevated levels of tumor necrosis factor (TNF) and monocyte chemoattractant protein 1 (MCP-1), provided an incentive for investigation of these cytokines as well. A GSH/G6PD-deficient model was created using human umbilical vein endothelial cells (HUVEC) treated with either buthionine sulfoximine (BSO), a pharmacological inhibitor of the rate-limiting enzyme of GSH biosynthesis (γ-glutamylcysteine synthetase), or with 6-aminonicotinamide (6-AN), an inhibitor of G6PD or G6PD siRNA. Normal and G6PD-deficient cells were also treated with pro-atherosclerotic stimuli such as high glucose, TNF, and MCP-1. After inhibiting or knocking down G6PD/GSH, the capacity of endothelial cells for monocyte recruitment was assessed by determining the expression of the adhesion molecules intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), which was upregulated by G6PD deficiency and accompanied by the presence of the oxidative stress markers NADPH oxidase 4 (NOX4), inducible nitric oxide synthase (iNOS), and reactive oxygen species (ROS). Treatment with the inhibitors BSO and 6-AN caused increased levels of adhesion molecule mRNA and monocyte-EC adhesion. Following treatment with high glucose, G6PD-deficient cells showed an increase in levels of ICAM-1 and VCAM-1 mRNA, as well as monocyte-EC adherence, compared with results seen in control cells. Treatment with l-cysteine (a precursor of GSH) protected endothelial cells by increasing GSH and attenuating ROS, ICAM-1, VCAM-1, and monocyte-EC adhesion. These results suggest that G6PD/GSH deficiency plays a role in endothelial dysfunction and that supplementation with l-cysteine can restore GSH levels and reduce the EC activation markers in G6PD-deficient conditions.


Assuntos
Moléculas de Adesão Celular/metabolismo , Adesão Celular/efeitos dos fármacos , Cisteína/farmacologia , Endotélio Vascular/efeitos dos fármacos , Deficiência de Glucosefosfato Desidrogenase/patologia , Monócitos/efeitos dos fármacos , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Monócitos/citologia , Monócitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...