Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 917: 170482, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38296067

RESUMO

Drylands are one of the most sensitive areas to climate change. Despite being characterized by water scarcity and low precipitation, drylands support a wide range of green biodiversity and nearly 40 % of the global population. However, the climate change impacts on dryland characteristics and vegetation dynamics are debatable as the reasons remain poorly understood. Here, we use hydro-meteorological variables from ERA5 reanalysis and GIMMS-NDVI to analyze the changes in dryland aridity and vegetation greenness in the eight selected global dryland regions. The total dryland area (excluding hyperarid) has increased by 12 %, while arid, semiarid, and dry sub-humid areas have increased by 10.5 %, 8 %, and 25 %, respectively. We find a significant increase in aridity in drylands across the globe, except for South Asia. A decrease (increase) in precipitation is the major driver for a significant increase (decrease) in dryland aridity, with a notable contribution from climate warming. Despite decreasing trends in precipitation, vegetation greenness has significantly increased in most dryland regions due to increased soil moisture. Cropland expansion in Europe, Asia, and Australia resulted in the maximum increase in NDVI (Normalized Difference Vegetation Index) in dryland regions. The highest increase, with a ΔNDVI of 0.075, was observed in South Asia. The enhanced vegetation greenness observed is attributed to the expansion of croplands in recent decades, which has increased soil moisture. Overall, we show that monitoring soil moisture variability can provide a more robust explanation for vegetation greenness in the global drylands than aridity change. Moreover, human interventions of climatic alteration through land use change practices, such as cropland expansion, cannot be ignored while explaining the ecosystem dynamics of the drylands.


Assuntos
Ecossistema , Solo , Humanos , Ásia , Biodiversidade , Mudança Climática
2.
Microb Pathog ; 173(Pt A): 105854, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36374855

RESUMO

The commercially used synthetic pesticides have been proven to be toxic not only to humans and other animals, but also to non-target plant, the surrounding organisms around the plant, and the environment. There are also increased concerns regarding the development of pest resistance towards these synthetic pesticides. As such, biopesticides, which are defined as the certain kinds of pesticides derived from natural sources such as plants, bacteria, fungi, animals and some minerals, are potential alternative pesticides and are gaining increasing attention. Biopesticides are safer and eco-friendly pesticides used for pest management. Among these, plant-based biopesticides constitute a small but important group of biopesticides. Plant based extracts and essential oils have been particularly used in the management of insects exhibiting a variety of anti-insecticidal mechanisms. Their chemical compositions are very complex and as such acquiring resistance by the pest against such biopesticide is very difficult. As far as their mechanism of action is concerned, these can act as insect repellants, insect attractants, or anti-feedants. They can also inhibit respiration or they can obstruct the host plant identification. These insecticides can inhibit oviposition and decrease adult emergence by ovicidal and larvicidal effects. Some of the essential oil based insecticides have even been commercialized for use. However, there are some limitations that restrict the widespread use of such biopesticides. These limitations include cost, difficulties in production, gentle action, and dearth of appropriate biopesticide formulations. As far as their regulations are concerned, it is still a problem in many countries further halting biopesticide use. But one thing is clear that biopesticides do have a promising future due to their eco-friendly nature and unique chemical compositions and unique mode of action.


Assuntos
Produtos Biológicos , Inseticidas , Óleos Voláteis , Praguicidas , Animais , Humanos , Agentes de Controle Biológico/farmacologia , Praguicidas/farmacologia , Inseticidas/farmacologia , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Controle Biológico de Vetores , Óleos Voláteis/farmacologia
3.
Microb Pathog ; 157: 104933, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33984466

RESUMO

The recent outbreak of viral infection and its transmission has highlighted the importance of its slowdown for the safeguard of public health, globally. The identification of novel drugs and efficient therapies against these infectious viruses is need of the hour. The eruption of COVID-19 is caused by a novel acute respiratory syndrome virus SARS-CoV-2 which has taken the whole world by storm as it has transformed into a global pandemic. This lethal syndrome is a global health threat to general public which has already affected millions of people. Despite the development of some potential vaccines and repurposed drugs by some Pharma companies, this health emergency needs more attention due to the less efficacy of these vaccines coupled with the emergence of novel and resistant strains of SARS-CoV-2. Due to enormous structural diversity and biological applications, natural products are considered as a wonderful source of drugs for such diseases. Natural product based drugs constitute a substantial proportion of the pharmaceutical market particularly in the therapeutic areas of infectious diseases and oncology. The naturally occurring bioactive antiviral phytochemicals including alkaloids, flavonoids and peptides have been subjected to virtual screening against COVID-19. Since there is no specific medicine available for the treatment of Covid-19, designing new drugs using in silico methods plays an all important role to find that magic bullet which can target this lethal virus. The in silico method is not only quick but economical also when compared to the other conventional methods which are hit and trial methods. Based on this in silico approach, various natural products have been recently identified which might have a potential to inhibit COVID-19 outbreak. These natural products have been shown by these docking studies to interact with the spike protein of the novel coronavirus. This spike protein has been shown to bind to a transmembrane protein called Angiotensin converting enzyme 2 (ACE2), this protein acts as a receptor for the viral spike protein. This comprehensive review article anticipates providing a summary of the authentic and peer reviewed published literature about the potential of natural metabolites that can be developed into possible lead compounds against this new threat of Covid-19. Main focus of the article will be to highlight natural sources of potential anti-coronavirus molecules, mechanism of action, docking studies and the target proteins as well as their toxicity profiles. This review article intends to provide a starting point for the research endeavors that are needed for the design and development of drugs based on pure natural products, their synthetic or semi-synthetic derivatives and standardized plant extracts. This review article will be highly helpful for scientists who are working or intend to work on antiviral drugs from natural sources.


Assuntos
COVID-19 , Desenho de Fármacos , Antivirais/farmacologia , Humanos , Chumbo , Simulação de Acoplamento Molecular , SARS-CoV-2
4.
J Environ Manage ; 277: 111362, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32949950

RESUMO

Submarine groundwater discharge (SGD) is an important process driven by marine and terrestrial forces. Low tide affects SGD the most, therefore the ideal time to detect SGD is the low tide, especially during spring tide. Techniques to detect and quantify SGD along with the understanding of the related aquifer characteristics is discussed in this study. Scientific community across the world is realizing the importance of studying and mapping SGD because in the scenario of climate change, this part of the global hydrological cycle is an important process and is known to have a significant effect on the marine ecosystem due to nutrient and metal inputs around the region of discharge. Therefore, understanding the processes governing SGD becomes very important. In this review, various components and processes related to SGD (e.g. Submarine Groundwater Recharge, Deep Porewater Upwelling, Recirculated Saline Groundwater Discharge), along with detailed discussion on impacts of SGD for marine ecosystem is presented. Also, it highlights the future research direction and emphasis is put on more research to be done keeping in mind the changing climate and its impacts on SGD.


Assuntos
Ecossistema , Água Subterrânea , Monitoramento Ambiental , Água do Mar , Navios
5.
Sci Total Environ ; 661: 251-265, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30677673

RESUMO

Sediment connectivity, defined as the degree of linkage between the sediment sources to downstream areas, is one of the most important properties that control landscape evolution in river basins. The degree of linkages amongst different parts of a catchment depends mainly on the hinterland characteristics (e.g. catchment morphology, slope, shape, relief, and elevation), channel characteristics (e.g. slope, stream network density, valley confinement), and the combined effects of vegetation (e.g. land use changes and land abandonment). This paper evaluates the sediment connectivity of the upper Kosi basin covering an area of ~52,731 km2 including Tibet and Nepal at different spatial scales. We have computed the index of connectivity (IC) using the equations originally proposed by Borselli et al. (2008) and modified by Cavalli et al. (2013) to evaluate the potential connection of sediment source areas to the primary channel network as well to the catchment outlet. Our results highlight significant spatial variability in sediment connectivity across the basin and provide important insights on structural sediment dynamics in a complex geological and geomorphological setting. We compare our results with the observed sediment load data at certain outlets and demonstrate that sediment flux in different sub-basins is controlled by variable slope distribution and land use and land cover that are strongly related to the structural connectivity. We argue that IC model can be extremely beneficial to understand sediment dynamics at catchment scale in a large river basin (~103-104 km2 scale), where systematic field investigations for mapping hillslope-channel linkages are not feasible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...