Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 10(11): 2684-2691, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31066274

RESUMO

An understanding of the factors limiting the open-circuit voltage ( Voc) and related photon energy loss mechanisms is critical to increase the power conversion efficiency (PCE) of small-molecule organic solar cells (OSCs), especially those with near-infrared (NIR) absorbers. In this work, two NIR boron dipyrromethene (BODIPY) molecules are characterized for application in planar (PHJ) and bulk (BHJ) heterojunction OSCs. When two H atoms are substituted by F atoms on the peripheral phenyl rings of the molecules, the molecular aggregation type in the thin film changes from the H-type to J-type. For PHJ devices, the nonradiative voltage loss of 0.35 V in the J-aggregated BODIPY is lower than that of 0.49 V in the H-aggregated device. In BHJ devices with a nonradiative voltage loss of 0.35 V, a PCE of 5.5% is achieved with an external quantum efficiency (EQE) maximum of 68% at 700 nm.

2.
Nat Commun ; 9(1): 2038, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29795114

RESUMO

The fact that organic solar cells perform efficiently despite the low dielectric constant of most photoactive blends initiated a long-standing debate regarding the dominant pathways of free charge formation. Here, we address this issue through the accurate measurement of the activation energy for free charge photogeneration over a wide range of photon energy, using the method of time-delayed collection field. For our prototypical low bandgap polymer:fullerene blends, we find that neither the temperature nor the field dependence of free charge generation depend on the excitation energy, ruling out an appreciable contribution to free charge generation though hot carrier pathways. On the other hand, activation energies are on the order of the room temperature thermal energy for all studied blends. We conclude that charge generation in such devices proceeds through thermalized charge transfer states, and that thermal energy is sufficient to separate most of these states into free charges.

3.
J Am Chem Soc ; 135(5): 1772-82, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23297679

RESUMO

In order to unravel the intricate interplay between disorder effects, molecular reorganization, and charge carrier localization, a comprehensive study was conducted on hole transport in a series of conjugated alternating phenanthrene indenofluorene copolymers. Each polymer in the series contained one further comonomer comprising monoamines, diamines, or amine-free structures, whose influence on the electronic, optical, and charge transport properties was studied. The series covered a wide range of highest occupied molecular orbital (HOMO) energies as determined by cyclovoltammetry. The mobility, inferred from time-of-flight (ToF) experiments as a function of temperature and electric field, was found to depend exponentially on the HOMO energy. Since possible origins for this effect include energetic disorder, polaronic effects, and wave function localization, the relevant parameters were determined using a range of methods. Disorder and molecular reorganization were established first by an analysis of absorption and emission measurements and second by an analysis of the ToF measurements. In addition, density functional theory calculations were carried out to determine how localized or delocalized holes on a polymer chain are and to compare calculated reorganization energies with those that have been inferred from optical spectra. In summary, we conclude that molecular reorganization has little effect on the hole mobility in this system while both disorder effects and hole localization in systems with low-lying HOMOs are predominant. In particular, as the energetic disorder is comparable for the copolymers, the absolute value of the hole mobility at room temperature is determined by the hole localization associated with the triarylamine moieties.


Assuntos
Polímeros/química , Aminas/química , Fluorenos/química , Indenos/química , Estrutura Molecular , Fenantrenos/química , Polímeros/síntese química , Teoria Quântica
5.
J Chem Phys ; 129(11): 114901, 2008 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-19044983

RESUMO

Two generations of polyphenylene dendrimers with a perylene diimide core are compared with a nondendronized tetraphenoxyperylene diimide model compound regarding their application in organic light-emitting diodes (OLEDs). Single layer devices with blends of the first and second generation dendrimers in polyfluorene are investigated as active layers in OLEDs, and the effect of dendronization on the emission color and electroluminescence intensity is studied. In photoluminescence, higher degrees of dendronization lead to a reduction in Forster transfer from the polyfluorene host to the perylene, resulting in a larger contribution of the blue host emission in the photoluminescence spectra. In electroluminescence, the dopants appear to act as active traps for electrons, resulting in a predominant generation of excitons on the dye. This gives rise to a remarkably stronger contribution of red emission in electroluminescence than in photoluminescence where energy is exchanged exclusively via Forster transfer. The pronounced color change from red to blue with higher degrees of dendronization and larger driving voltages is explained by the competition of the recombination of free electrons with holes and trapping of electrons by the emitting guest.

6.
Chemphyschem ; 9(10): 1430-6, 2008 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-18561348

RESUMO

Photophysical processes in conjugated polymers are influenced by two competing effects: the extent of excited state delocalization along a chain, and the electronic interaction between chains. Experimentally, it is often difficult to separate the two because both are controlled by chain conformation. Here we demonstrate that it is possible to modify intra-chain delocalization without inducing inter-chain interactions by intercalating polymer monolayers between the sheets of an inorganic layered matrix. The red-emitting conjugated polymer, MEH-PPV, is confined to the interlayer space of layered SnS(2). The formation of isolated polymer monolayers between the SnS(2) sheets is confirmed by X-ray diffraction measurements. Photoluminescence excitation (PLE) and photoluminescence (PL) spectra of the incorporated MEH-PPV chains reveal that the morphology of the incorporated chains can be varied through the choice of solvent used for chain intercalation. Incorporation from chloroform results in more extended conformations compared to intercalation from xylene. Even highly twisted conformations can be achieved when the incorporation occurs from a methanol:chloroform mixture. The PL spectra of the MEH-PPV incorporated SnS(2) nanocomposites using the different solvents are in good agreement with the PL spectra of the same solutions, indicating that the conformation of the polymer chains in the solutions is retained upon intercalation into the inorganic host. Therefore, intercalation of conjugated polymer chains into layered hosts enables the study of intra-chain photophysical processes as a function of chain conformation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...