Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biotechnol Biofuels ; 6(1): 180, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24308448

RESUMO

BACKGROUND: During ethanol fermentation, the ethanologenic bacterium, Zymomonas mobilis may encounter several environmental stresses such as heat, ethanol and osmotic stresses due to high sugar concentration. Although supplementation of the compatible solute sorbitol into culture medium enhances cell growth of Z. mobilis under osmotic stress, the protective function of this compound on cell growth and ethanol production by this organism under other stresses such as heat and ethanol has not been described yet. The formation of sorbitol in Z. mobilis was carried out by the action of the glucose-fructose oxidoreductase (GFOR) enzyme which is regulated by the gfo gene. Therefore, the gfo gene in Z. mobilis was disrupted by the fusion-PCR-based construction technique in the present study, and the protective function of sorbitol on cell growth, protein synthesis and ethanol production by Z. mobilis under heat, ethanol, and osmotic stresses was investigated. RESULTS: Based on the fusion-PCR-based construction technique, the gfo gene in Z. mobilis was disrupted. Disruption of the Z. mobilis gfo gene resulted in the reduction of cell growth and ethanol production not only under osmotic stress but also under heat and ethanol stresses. Under these stress conditions, the transcription level of pdc, adhA, and adhB genes involved in the pyruvate-to-ethanol (PE) pathway as well as the synthesis of proteins particularly in Z. mobilis disruptant strain were decreased compared to those of the parent. These findings suggest that sorbitol plays a crucial role not only on cell growth and ethanol production but also on the protection of cellular proteins from stress responses. CONCLUSION: We showed for the first time that supplementation of the compatible solute sorbitol not only promoted cell growth but also increased the ethanol fermentation capability of Z. mobilis under heat, ethanol, and osmotic stresses. Although the molecular mechanism involved in tolerance to stress conditions after sorbitol supplementation is still unclear, this research has provided useful information for the development of the effective ethanol fermentation process particularly under environmental conditions with high temperature or high ethanol and sugar concentration conditions.

2.
Electron. j. biotechnol ; 14(6): 3-3, Nov. 2011. ilus, tab
Artigo em Inglês | LILACS | ID: lil-640520

RESUMO

Dried spent yeast (DSY) was used as a low-cost nitrogen supplement for ethanol fermentation from sweet sorghum juice under very high gravity (VHG) conditions by Saccharomyces cerevisiae NP 01. The fermentation was carried out at 30ºC in a 5-litre bioreactor. The results showed that DSY promoted ethanol production efficiencies. The ethanol concentration (P), productivity (Qp) and yield (Yp/s) of the sterile juice (total sugar of 280 g l-1) supplemented with 8 g l-1 of DSY were not different from those supplemented with yeast extract and/or peptone at the same amount. The initial yeast cell concentration of 5 x 10(7) cells ml-1 was found to be optimal for scale-up ethanol production. In addition, an increase in sugar concentration in inoculum preparation medium (from 10 to 100 g l-1) improved the ability of the inoculum to produce ethanol under the VHG conditions. When S. cerevisiae NP 01 grown in the juice containing 100 g l-1 of total sugar was used as the inoculum for ethanol fermentation, the P, Qp and Yp/s obtained were 108.98 +/- 1.16 g l-1, 2.27 +/- 0.06 g l-1 h-1 and 0.47 +/- 0.01 g g-1, respectively. Similar results were also observed when the ethanol fermentation was scaled up to a 50-litre bioreactor under the same conditions. The cost of the sweet sorghum for ethanol production was US$ 0.63 per litre of ethanol. These results clearly indicate the high potential of using sweet sorghum juice supplemented with DSY under VHG fermentation for ethanol production in industrial applications.


Assuntos
Etanol/metabolismo , Fermentação , Hipergravidade , Nitrogênio , Saccharomyces cerevisiae/fisiologia , Sorghum/metabolismo , Leveduras
3.
Electron. j. biotechnol ; 14(1): 4-5, Jan. 2011. ilus, tab
Artigo em Inglês | LILACS | ID: lil-591922

RESUMO

Batch ethanol fermentations from sweet sorghum juice by Saccharomyces cerevisiae NP 01 were carried out in a 500 ml air-locked Erlenmeyer flask under very high gravity (VHG) and static conditions. The maximum ethanol production efficiency was obtained when 9 g l-1 of yeast extract was supplemented to the juice. The ethanol concentration (P), productivity (Qp) and yield (Yp/s) were 120.24 +/- 1.35 g l-1, 3.01 +/- 0.08 g l-1 h-1 and 0.49 +/- 0.01, respectively. Scale up ethanol fermentation in a 5-litre bioreactor at an agitation rate of 100 rev min-1 revealed that P, Qp and Yp/s were 139.51 +/- 0.11 g l-1, 3.49 +/- 0.00 g l-1 h-1 and 0.49 +/- 0.01, respectively, whereas lower P (119.53 +/- 0.20 g l-1) and Qp (2.13 +/- 0.01 g l-1 h-1) were obtained in a 50-litre bioreactor. In the repeated-batch fermentation in the 5-litre bioreactor with fill and drain volume of 50 percent of the working volume, lower P and Qp were observed in the subsequent batches. P in batch 2 to 8 ranged from 103.37 +/- 0.28 to 109.53 +/- 1.06 g l-1.


Assuntos
Etanol/metabolismo , Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Fermentação , Fermentação/fisiologia , Preparações de Plantas/metabolismo
4.
J Agric Food Chem ; 58(10): 6257-63, 2010 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-20438126

RESUMO

Variability of genotype and genotype x environment (G x E) interactions for fatty acids are important to develop high-oleic types in peanut varietal improvement programs. The objective of this study was to determine the variation in fatty acid composition among peanut genotypes and G x E interactions of fatty acids in three groups of genotypes with high, intermediate, and low-oleic acid. Twenty-one genotypes were tested in three environments consisting of two rainy seasons and one dry season. The results indicated that G x E interactions were significant for biomass, pod yield, and harvest index and also for oleic, linoleic acids, and O/L ratio. G x E interactions were less important than genotypic main effect. For oleic acid, significant interactions were found in the intermediate and low-oleic groups only. Therefore, selection for high-oleic trait in peanut breeding programs should be effective.


Assuntos
Arachis/genética , Meio Ambiente , Ácidos Graxos/análise , Genótipo , Ácido Oleico/análise , Óleos de Plantas/análise , Arachis/química , Arachis/crescimento & desenvolvimento , Cruzamento , Variação Genética , Óleo de Amendoim , Óleos de Plantas/química , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...