Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oncoimmunology ; 9(1): 1846915, 2020 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-33344042

RESUMO

Immune checkpoint blockade (ICB) has demonstrated an impressive outcome in patients with metastatic melanoma, yet, durable complete response; even with Ipilimumab/Nivolumab combo are under 30%. Primary and acquired resistance in response to ICB is commonly due to a tumor immune escape mechanism dictated by the tumor microenvironment (TME). Macrophage Migratory Inhibition Factor (MIF) has emerged as an immunosuppressive factor secreted in the TME. We have previously demonstrated that blockade of the MIF-CD74 signaling on macrophages and dendritic cells restored the anti-tumor immune response against melanoma. Here, we report that inhibition of the MIF-CD74 axis combined with ipilimumab could render resistant melanoma to better respond to anti-CTLA-4 treatment. We provide evidence that blocking the MIF-CD74 signaling potentiates CD8+ T-cells infiltration and drives pro-inflammatory M1 conversion of macrophages in the TME. Furthermore, MIF inhibition resulted in reprogramming the metabolic pathway by reducing lactate production, HIF-1α and PD-L1 expression in the resistant melanoma cells. Melanoma patient data extracted from the TCGA database supports the hypothesis that high MIF expression strongly correlates with poor response to ICB therapy. Our findings provide a rationale for combining anti-CTLA-4 with MIF inhibitors as a potential strategy to overcome resistance to ICB therapy in melanoma, turning a "cold" tumor into a "hot" one mediated by the activation of innate immunity and reprogramming of tumor metabolism and reduced PD-L1 expression in melanoma cells.


Assuntos
Fatores Inibidores da Migração de Macrófagos , Melanoma , Humanos , Inibidores de Checkpoint Imunológico , Oxirredutases Intramoleculares/uso terapêutico , Ipilimumab/uso terapêutico , Fatores Inibidores da Migração de Macrófagos/uso terapêutico , Melanoma/tratamento farmacológico , Microambiente Tumoral
2.
Cancer Immunol Res ; 8(11): 1365-1380, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917656

RESUMO

Despite the clinical success of T-cell checkpoint blockade, most patients with cancer still fail to have durable responses to immunotherapy. The molecular mechanisms driving checkpoint blockade resistance, whether preexisting or evolved, remain unclear. To address this critical knowledge gap, we treated B16 melanoma with the combination of CTLA-4, PD-1, and PD-L1 blockade and a Flt3 ligand vaccine (≥75% curative), isolated tumors resistant to therapy, and serially passaged them in vivo with the same treatment regimen until they developed complete resistance. Using gene expression analysis and immunogenomics, we determined the adaptations associated with this resistance phenotype. Checkpoint resistance coincided with acquisition of a "hypermetabolic" phenotype characterized by coordinated upregulation of the glycolytic, oxidoreductase, and mitochondrial oxidative phosphorylation pathways. These resistant tumors flourished under hypoxic conditions, whereas metabolically starved T cells lost glycolytic potential, effector function, and the ability to expand in response to immunotherapy. Furthermore, we found that checkpoint-resistant versus -sensitive tumors could be separated by noninvasive MRI imaging based solely on their metabolic state. In a cohort of patients with melanoma resistant to both CTLA-4 and PD-1 blockade, we observed upregulation of pathways indicative of a similar hypermetabolic state. Together, these data indicated that melanoma can evade T-cell checkpoint blockade immunotherapy by adapting a hypermetabolic phenotype.


Assuntos
Imunoterapia/métodos , Melanoma Experimental/genética , Animais , Modelos Animais de Doenças , Humanos , Masculino , Melanoma Experimental/metabolismo , Camundongos , Fosforilação Oxidativa , Fenótipo
3.
J Clin Invest ; 128(11): 5137-5149, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30188869

RESUMO

Despite the success of immune checkpoint blockade against melanoma, many "cold" tumors like prostate cancer remain unresponsive. We found that hypoxic zones were prevalent across preclinical prostate cancer and resisted T cell infiltration even in the context of CTLA-4 and PD-1 blockade. We demonstrated that the hypoxia-activated prodrug TH-302 reduces or eliminates hypoxia in these tumors. Combination therapy with this hypoxia-prodrug and checkpoint blockade cooperated to cure more than 80% of tumors in the transgenic adenocarcinoma of the mouse prostate-derived (TRAMP-derived) TRAMP-C2 model. Immunofluorescence imaging showed that TH-302 drives an influx of T cells into hypoxic zones, which were expanded by checkpoint blockade. Further, combination therapy reduced myeloid-derived suppressor cell density by more than 50%, and durably reduced the capacity of the tumor to replenish the granulocytic subset. Spontaneous prostate tumors in TRAMP transgenic mice, which completely resist checkpoint blockade, showed minimal adenocarcinoma tumor burden at 36 weeks of age and no evidence of neuroendocrine tumors with combination therapy. Survival of Pb-Cre4, Ptenpc-/-Smad4pc-/- mice with aggressive prostate adenocarcinoma was also significantly extended by this combination of hypoxia-prodrug and checkpoint blockade. Hypoxia disruption and T cell checkpoint blockade may sensitize some of the most therapeutically resistant cancers to immunotherapy.


Assuntos
Adenocarcinoma/terapia , Imunoterapia , Neoplasias Experimentais/terapia , Nitroimidazóis/farmacologia , Mostardas de Fosforamida/farmacologia , Neoplasias da Próstata/terapia , Linfócitos T/imunologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Hipóxia Celular/genética , Hipóxia Celular/imunologia , Linhagem Celular Tumoral , Masculino , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Neoplasias Experimentais/genética , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Linfócitos T/patologia
4.
Clin Cancer Res ; 24(5): 1138-1151, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29301830

RESUMO

Purpose: Agonist antibodies targeting the T-cell costimulatory receptor 4-1BB (CD137) are among the most effective immunotherapeutic agents across preclinical cancer models. In the clinic, however, development of these agents has been hampered by dose-limiting liver toxicity. Lack of knowledge of the mechanisms underlying this toxicity has limited the potential to separate 4-1BB agonist-driven tumor immunity from hepatotoxicity.Experimental Design: The capacity of 4-1BB agonist antibodies to induce liver toxicity was investigated in immunocompetent mice, with or without coadministration of checkpoint blockade, via (i) measurement of serum transaminase levels, (ii) imaging of liver immune infiltrates, and (iii) qualitative and quantitative assessment of liver myeloid and T cells via flow cytometry. Knockout mice were used to clarify the contribution of specific cell subsets, cytokines, and chemokines.Results: We find that activation of 4-1BB on liver myeloid cells is essential to initiate hepatitis. Once activated, these cells produce interleukin-27 that is required for liver toxicity. CD8 T cells infiltrate the liver in response to this myeloid activation and mediate tissue damage, triggering transaminase elevation. FoxP3+ regulatory T cells limit liver damage, and their removal dramatically exacerbates 4-1BB agonist-induced hepatitis. Coadministration of CTLA-4 blockade ameliorates transaminase elevation, whereas PD-1 blockade exacerbates it. Loss of the chemokine receptor CCR2 blocks 4-1BB agonist hepatitis without diminishing tumor-specific immunity against B16 melanoma.Conclusions: 4-1BB agonist antibodies trigger hepatitis via activation and expansion of interleukin-27-producing liver Kupffer cells and monocytes. Coadministration of CTLA-4 and/or CCR2 blockade may minimize hepatitis, but yield equal or greater antitumor immunity. Clin Cancer Res; 24(5); 1138-51. ©2018 AACR.


Assuntos
Antineoplásicos Imunológicos/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Interleucinas/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/agonistas , Animais , Antineoplásicos Imunológicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/imunologia , Linhagem Celular Tumoral/transplante , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Interleucinas/imunologia , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/patologia , Masculino , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Células Mieloides/metabolismo , Receptores CCR2/antagonistas & inibidores , Receptores CCR2/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
5.
Nat Commun ; 8(1): 1447, 2017 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-29129918

RESUMO

CD40 agonists bind the CD40 molecule on antigen-presenting cells and activate them to prime tumor-specific CD8+ T cell responses. Here, we study the antitumor activity and mechanism of action of a nonreplicating adenovirus encoding a chimeric, membrane-bound CD40 ligand (ISF35). Intratumoral administration of ISF35 in subcutaneous B16 melanomas generates tumor-specific, CD8+ T cells that express PD-1 and suppress tumor growth. Combination therapy of ISF35 with systemic anti-PD-1 generates greater antitumor activity than each respective monotherapy. Triple combination of ISF35, anti-PD-1, and anti-CTLA-4 results in complete eradication of injected and noninjected subcutaneous tumors, as well as melanoma tumors in the brain. Therapeutic efficacy is associated with increases in the systemic level of tumor-specific CD8+ T cells, and an increased ratio of intratumoral CD8+ T cells to CD4+ Tregs. These results provide a proof of concept of systemic antitumor activity after intratumoral CD40 triggering with ISF35 in combination with checkpoint blockade for multifocal cancer, including the brain.


Assuntos
Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Antígenos CD40/agonistas , Ligante de CD40/imunologia , Linfócitos T CD8-Positivos/imunologia , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Adenoviridae/genética , Animais , Encéfalo/patologia , Relação CD4-CD8 , Antígenos CD40/metabolismo , Ligante de CD40/genética , Antígeno CTLA-4/antagonistas & inibidores , Linhagem Celular Tumoral , Ativação Enzimática , Feminino , Imunoterapia/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/biossíntese
6.
Cancer Immunol Res ; 5(8): 676-684, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28674082

RESUMO

Coordinated manipulation of independent immune regulatory pathways in the tumor microenvironment-including blockade of T-cell checkpoint receptors and reversal of suppressive myeloid programs-can render aggressive cancers susceptible to immune rejection. Elevated toxicity associated with combination immunotherapy, however, prevents translation of the most efficacious regimens. We evaluated T-cell checkpoint-modulating antibodies targeting CTLA-4, PD-1, and 4-1BB together with myeloid agonists targeting either STING or Flt3 in the TRAMP-C2 model of prostate cancer to determine whether low-dose intratumoral delivery of these agents could elicit systemic control of multifocal disease. Intratumoral administration of the STING agonist cyclic di-GMP (CDG) or Flt3 Ligand (Flt3L) augmented the therapeutic effect of systemic triple checkpoint modulation and promoted the cure of 75% of mice with bilateral TRAMP-C2; however, when all agents were administered locally, only CDG mobilized abscopal immunity. Combination efficacy correlated with globally enhanced ratios of CD8+ T cells to regulatory T cells (Treg), macrophages, and myeloid-derived suppressor cells, and downregulation of the M2 marker CD206 on tumor-associated macrophages. Flt3L improved CD8+ T-cell and dendritic cell infiltration of tumors, but was diminished in efficacy by concomitant Treg expansion. Although intratumoral CDG/checkpoint therapy invokes substantial ulceration at the injection site, reduced CDG dosing can preserve tissue integrity without sacrificing therapeutic benefit. For high-order combinations of T-cell checkpoint antibodies and local myeloid agonists, systemic antibody administration provides the greatest efficacy; however, local administration of CDG and antibody provides substantial systemic benefit while minimizing the potential for immune-related adverse events. Cancer Immunol Res; 5(8); 676-84. ©2017 AACR.


Assuntos
Linfócitos do Interstício Tumoral/imunologia , Proteínas de Membrana/imunologia , Neoplasias/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/imunologia , Linhagem Celular Tumoral , GMP Cíclico/imunologia , Células Dendríticas/imunologia , Humanos , Imunoterapia , Proteínas de Membrana/agonistas , Camundongos , Neoplasias/patologia , Neoplasias/terapia , Receptor de Morte Celular Programada 1/imunologia , Linfócitos T/imunologia , Microambiente Tumoral/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA