Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(4)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38671891

RESUMO

The endothelium, the innermost cell layer of blood vessels, is not only a physical barrier between the bloodstream and the surrounding tissues but has also essential functions in vascular homeostasis. Therefore, it is not surprising that endothelial dysfunction is associated with most cardiovascular diseases. The functionality of the endothelium is compromised by endotoxemia, the presence of bacterial endotoxins in the bloodstream with the main endotoxin lipopolysaccharide (LPS). Therefore, this review will focus on the effects of LPS on the endothelium. Depending on the LPS concentration, the outcomes are either sepsis or, at lower concentrations, so-called low-dose or metabolic endotoxemia. Sepsis, a life-threatening condition evoked by hyperactivation of the immune response, includes breakdown of the endothelial barrier resulting in failure of multiple organs. A deeper understanding of the underlying mechanisms in the endothelium might help pave the way to new therapeutic options in sepsis treatment to prevent endothelial leakage and fatal septic shock. Low-dose endotoxemia or metabolic endotoxemia results in chronic inflammation leading to endothelial cell senescence, which entails endothelial dysfunction and thus plays a critical role in cardiovascular diseases. The identification of compounds counteracting senescence induction in endothelial cells might therefore help in delaying the onset or progression of age-related pathologies. Interestingly, two natural plant-derived substances, caffeine and curcumin, have shown potential in preventing endothelial cell senescence.

2.
Antioxidants (Basel) ; 12(6)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37371974

RESUMO

The maintenance of Thioredoxin-1 (Trx-1) levels, and thus of cellular redox homeostasis, is vital for endothelial cells (ECs) to prevent senescence induction. One hallmark of EC functionality, their migratory capacity, which depends on intact mitochondria, is reduced in senescence. Caffeine improves the migratory capacity and mitochondrial functionality of ECs. However, the impact of caffeine on EC senescence has never been investigated. Moreover, a high-fat diet, which can induce EC senescence, results in approximately 1 ng/mL lipopolysaccharide (LPS) in the blood. Therefore, we investigated if low dose endotoxemia induces EC senescence and concomitantly reduces Trx-1 levels, and if caffeine prevents or even reverses senescence. We show that caffeine precludes H2O2-triggered senescence induction by maintaining endothelial NO synthase (eNOS) levels and preventing the elevation of p21. Notably, 1 ng/mL LPS also increases p21 levels and reduces eNOS and Trx-1 amounts. These effects are completely blocked by co-treatment with caffeine. This prevention of senescence induction is similarly accomplished by the permanent expression of mitochondrial p27, a downstream effector of caffeine. Most importantly, after senescence induction by LPS, a single bolus of caffeine inhibits the increase in p21. This treatment also blocks Trx-1 degradation, suggesting that the reversion of senescence is intimately associated with a normalized redox balance.

3.
Int J Cardiol ; 363: 159-162, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35728699

RESUMO

BACKGROUND: In patients undergoing interventional or surgical coronary revascularization, subclinical hypothyroidism is common and associated with worse outcome, including the need for postoperative inotropic support. In isolated rat hearts with global ischemia/reperfusion, exogenous triiodothyronine (T3) reduces infarct size. Aim of this study was, to investigate whether or not exogenous T3 protects human myocardium from ischemia/reperfusion injury. METHODS: Right atrial trabeculae from patients undergoing routine coronary artery bypass grafting were isolated and transferred to Tyrode's buffer. Electrically initiated (1 Hz) contractile stress (mN/mm2) was recorded for 10 min at baseline (95% O2/ 5% CO2, glucose). Sixty min hypoxia were induced by changing buffer gas and increasing stimulation rate (95% N2/ 5% CO2, choline chloride, 3 Hz) before return to reoxygenation for 30 min. T3 (500 µg/l) vs. NaOH (solvent control) was administered A) throughout (n = 11 vs. n = 9) or B) only 15 min before and during reoxygenation (n = 12 vs. n = 13). Western blot analyses of established cardioprotective signaling proteins were performed. RESULTS: At baseline, contractile stress was comparable. T3 improved the cumulative recovery of contractile stress during reoxygenation from 41 ± 16 with NaOH to 55 ± 11% of baseline with T3, when given continuously in A or from 52 ± 13 with NaOH to 63 ± 11% of baseline with T3 when given just before and during reoxygenation in B. The ratio of mitochondrial complex I matrix arm to membrane NADH:ubiquinone oxidoreductase subunits (NDUF)V2 to NDUFA9 was reduced, reflecting increased complex I activity. CONCLUSION: T3 increases contractile recovery of human right atrial trabeculae from hypoxia/reoxygenation.


Assuntos
Contração Miocárdica , Tri-Iodotironina , Animais , Dióxido de Carbono , Humanos , Hipóxia/metabolismo , Isquemia/metabolismo , Miocárdio/metabolismo , Ratos , Hidróxido de Sódio/metabolismo , Tri-Iodotironina/farmacologia
4.
Antioxidants (Basel) ; 11(4)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35453298

RESUMO

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor whose activity can be modulated by polyphenols, such as curcumin. AhR and curcumin have evolutionarily conserved effects on aging. Here, we investigated whether and how the AhR mediates the anti-aging effects of curcumin across species. Using a combination of in vivo, in vitro, and in silico analyses, we demonstrated that curcumin has AhR-dependent or -independent effects in a context-specific manner. We found that in Caenorhabditis elegans, AhR mediates curcumin-induced lifespan extension, most likely through a ligand-independent inhibitory mechanism related to its antioxidant activity. Curcumin also showed AhR-independent anti-aging activities, such as protection against aggregation-prone proteins and oxidative stress in C. elegans and promotion of the migratory capacity of human primary endothelial cells. These AhR-independent effects are largely mediated by the Nrf2/SKN-1 pathway.

5.
Cells ; 10(12)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34944035

RESUMO

Mitochondria play a critical role in providing energy, maintaining cellular metabolism, and regulating cell survival and death. To carry out these crucial functions, mitochondria employ more than 1500 proteins, distributed between two membranes and two aqueous compartments. An extensive network of dedicated proteins is engaged in importing and sorting these nuclear-encoded proteins into their designated mitochondrial compartments. Defects in this fundamental system are related to a variety of pathologies, particularly engaging the most energy-demanding tissues. In this review, we summarize the state-of-the-art knowledge about the mitochondrial protein import machinery and describe the known interrelation of its failure with age-related neurodegenerative and cardiovascular diseases.


Assuntos
Envelhecimento/metabolismo , Doenças Cardiovasculares/metabolismo , Proteínas Mitocondriais/metabolismo , Doenças Neurodegenerativas/metabolismo , Animais , Humanos , Membranas Mitocondriais/metabolismo , Transporte Proteico
6.
Circulation ; 144(23): 1876-1890, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34672678

RESUMO

BACKGROUND: The catalytic subunit of telomerase, telomerase reverse transcriptase (TERT), has protective functions in the cardiovascular system. TERT is not only present in the nucleus but also in mitochondria. However, it is unclear whether nuclear or mitochondrial TERT is responsible for the observed protection, and the appropriate tools are missing to dissect this. METHODS: We generated new mouse models containing TERT exclusively in the mitochondria (mitoTERT mice) or the nucleus (nucTERT mice) to finally distinguish between the functions of nuclear and mitochondrial TERT. Outcome after ischemia/reperfusion, mitochondrial respiration in the heart, and cellular functions of cardiomyocytes, fibroblasts, and endothelial cells, as well, were determined. RESULTS: All mice were phenotypically normal. Although respiration was reduced in cardiac mitochondria from TERT-deficient and nucTERT mice, it was increased in mitoTERT animals. The latter also had smaller infarcts than wild-type mice, whereas nucTERT animals had larger infarcts. The decrease in ejection fraction after 1, 2, and 4 weeks of reperfusion was attenuated in mitoTERT mice. Scar size was also reduced and vascularization increased. Mitochondrial TERT protected a cardiomyocyte cell line from apoptosis. Myofibroblast differentiation, which depends on complex I activity, was abrogated in TERT-deficient and nucTERT cardiac fibroblasts and completely restored in mitoTERT cells. In endothelial cells, mitochondrial TERT enhanced migratory capacity and activation of endothelial nitric oxide synthase. Mechanistically, mitochondrial TERT improved the ratio between complex I matrix arm and membrane subunits, explaining the enhanced complex I activity. In human right atrial appendages, TERT was localized in mitochondria and there increased by remote ischemic preconditioning. The telomerase activator TA-65 evoked a similar effect in endothelial cells, thereby increasing their migratory capacity, and enhanced myofibroblast differentiation. CONCLUSIONS: Mitochondrial, but not nuclear TERT, is critical for mitochondrial respiration and during ischemia/reperfusion injury. Mitochondrial TERT improves complex I subunit composition. TERT is present in human heart mitochondria, and remote ischemic preconditioning increases its level in those organelles. TA-65 has comparable effects ex vivo and improves the migratory capacity of endothelial cells and myofibroblast differentiation. We conclude that mitochondrial TERT is responsible for cardioprotection, and its increase could serve as a therapeutic strategy.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias Cardíacas/enzimologia , Proteínas Mitocondriais/metabolismo , Traumatismo por Reperfusão Miocárdica/enzimologia , Telomerase/metabolismo , Animais , Complexo I de Transporte de Elétrons/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias Cardíacas/genética , Proteínas Mitocondriais/genética , Traumatismo por Reperfusão Miocárdica/genética , Telomerase/genética
7.
Antioxidants (Basel) ; 10(9)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34573059

RESUMO

Sepsis is an exaggerated immune response upon infection with lipopolysaccharide (LPS) as the main causative agent. LPS-induced activation and apoptosis of endothelial cells (EC) can lead to organ dysfunction and finally organ failure. We previously demonstrated that the first twenty amino acids of the Apurinic/Apyrimidinic Endodeoxyribonuclease 1 (APEX1) are sufficient to inhibit EC apoptosis. To identify genes whose regulation by LPS is affected by this N-terminal APEX1 peptide, EC were transduced with an expression vector for the APEX1 peptide or an empty control vector and treated with LPS. Following RNA deep sequencing, genes upregulated in LPS-treated EC expressing the APEX1 peptide were identified bioinformatically. Selected candidates were validated by semi-quantitative real time PCR, a promising one was Selenoprotein T (SELENOT). For functional analyses, an expression vector for SELENOT was generated. To study the effect of SELENOT expression on LPS-induced EC activation and apoptosis, the SELENOT vector was transfected in EC. Immunostaining showed that SELENOT was expressed and localized in the ER. EC transfected with the SELENOT plasmid showed no activation and reduced apoptosis induced by LPS. SELENOT as well as APEX1(1-20) can protect EC against activation and apoptosis and could provide new therapeutic approaches in the treatment of sepsis.

8.
Front Cell Dev Biol ; 9: 698658, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307376

RESUMO

Mitochondrial protein biogenesis relies almost exclusively on the expression of nuclear-encoded polypeptides. The current model postulates that most of these proteins have to be delivered to their final mitochondrial destination after their synthesis in the cytoplasm. However, the knowledge of this process remains limited due to the absence of proper experimental real-time approaches to study mitochondria in their native cellular environment. We developed a gentle microinjection procedure for fluorescent reporter proteins allowing a direct non-invasive study of protein transport in living cells. As a proof of principle, we visualized potential-dependent protein import into mitochondria inside intact cells in real-time. We validated that our approach does not distort mitochondrial morphology and preserves the endogenous expression system as well as mitochondrial protein translocation machinery. We observed that a release of nascent polypeptides chains from actively translating cellular ribosomes by puromycin strongly increased the import rate of the microinjected pre-protein. This suggests that a substantial amount of mitochondrial translocase complexes was involved in co-translational protein import of endogenously expressed pre-proteins. Our protein microinjection method opens new possibilities to study the role of mitochondrial protein import in cell models of various pathological conditions as well as aging processes.

9.
Antioxidants (Basel) ; 10(3)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799664

RESUMO

We previously demonstrated that the transcription factor Grainyhead-like 3 (GRHL3) has essential functions in endothelial cells by inhibiting apoptosis and promoting migration as well as activation of endothelial nitric oxide synthase (eNOS). We now show that a large portion of the protein is localized to myo-endothelial projections of murine arteries suggesting extra-nuclear functions. Therefore, we generated various deletion mutants to identify the nuclear localization signal (NLS) of GRHL3 and assessed potential extra-nuclear functions. Several large-scale deletion mutants were incapable of activating a GRHL3-dependent reporter construct, which could either be due to deficiencies in transcriptional activation or to impaired nuclear import. One of these mutants encompassed a predicted bipartite NLS whose deletion led to the retention of GRHL3 outside the nucleus. Interestingly, this mutant retained functions of the full-length protein as it could still inhibit pathways inducing endothelial cell apoptosis. As apoptosis protection by GRHL3 depends on NO-production, we examined whether GRHL3 could interact with eNOS and showed a direct interaction, which was enhanced with the extra-nuclear GRHL3 variant. The observation that endogenous GRHL3 also interacts with eNOS in intact murine arteries corroborated these findings and substantiated the notion that GRHL3 has important extra-nuclear functions in the endothelium.

10.
Redox Biol ; 34: 101543, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32502898

RESUMO

Telomerase consists of the catalytic subunit Telomerase Reverse Transcriptase (TERT) and the Telomerase RNA Component. Its canonical function is the prevention of telomere erosion. Over the last years it became evident that TERT is also present in tissues with low replicative potential. Important non-canonical functions of TERT are protection against apoptosis and maintenance of the cellular redox homeostasis in cancer as well as in somatic tissues. Intriguingly, TERT and reactive oxygen species (ROS) are interdependent on each other, with TERT being regulated by changes in the redox balance and itself controlling ROS levels in the cytosol and in the mitochondria. The latter is achieved because TERT is present in the mitochondria, where it protects mitochondrial DNA and maintains levels of anti-oxidative enzymes. Since numerous diseases are associated with oxidative stress, increasing the mitochondrial TERT level could be of therapeutic value.


Assuntos
Telomerase , Homeostase , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oxirredução , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo
11.
Oxid Med Cell Longev ; 2019: 7976382, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31281593

RESUMO

Concentrations of low-density lipoprotein (LDL) above 0.8 mg/ml have been associated with increased risk for cardiovascular diseases and impaired endothelial functionality. Here, we demonstrate that high concentrations of LDL (1 mg/ml) decreased NOS3 protein and RNA levels in primary human endothelial cells. In addition, RNA sequencing data, in particular splice site usage analysis, showed a shift in NOS3 exon-exon junction reads towards those specifically assigned to nonfunctional transcript isoforms further diminishing the functional NOS3 levels. The reduction in NOS3 was accompanied by decreased migratory capacity, which depends on intact mitochondria and ATP formation. In line with these findings, we also observed a reduced ATP content. While mitochondrial mass was unaffected by high LDL, we found an increase in mitochondrial DNA copy number and mitochondrial RNA transcripts but decreased expression of nuclear genes coding for respiratory chain proteins. Therefore, high LDL treatment most likely results in an imbalance between respiratory chain complex proteins encoded in the mitochondria and in the nucleus resulting in impaired respiratory chain function explaining the reduction in ATP content. In conclusion, high LDL treatment leads to a decrease in active NOS3 and dysregulation of mitochondrial transcription, which is entailed by reduced ATP content and migratory capacity and thus, impairment of endothelial cell functionality.


Assuntos
Células Endoteliais/metabolismo , Lipoproteínas LDL/metabolismo , Mitocôndrias/metabolismo , Humanos , Transcrição Gênica
12.
Exp Gerontol ; 117: 106-112, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30476532

RESUMO

Inhalation of combustion-derived particles is associated with the development of age-related diseases like chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. In both diseases senescence of lung epithelial cells has been observed. Employing an in vitro system of repetitive exposure to pure carbon nanoparticles we asked whether this kind of particles are able to induce a senescent like phenotype, which might be accompanied by a loss of functionality at the level of gap junctional intercellular communication. Non-cytotoxic doses of carbon nanoparticles but not of bigger carbon particles led to an irreversible reduction of the proliferative capacity accompanied by the accumulation of the cell cycle blocking proteins p21 and p16 as well as a loss of both redox sensitive histone deacetylase SIRT1 and connexin-43. Gap junction intercellular communication detected by microinjection of fluorescent lucifer yellow was dramatically decreased after exposure. This loss of functionality was associated with a reduction of Connexin 43 at the plasma membrane. As the experimental system was chosen to study the effects of pure carbon nanoparticles in the absence of inflammatory cells, the data indicate that cumulative long-term exposure of the lung epithelium to low doses of combustion-derived nanoparticles might contribute to epithelial senescence and age-associated diseases of the airways.


Assuntos
Carbono/farmacologia , Senescência Celular/efeitos dos fármacos , Junções Comunicantes/efeitos dos fármacos , Alvéolos Pulmonares/efeitos dos fármacos , Animais , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Senescência Celular/fisiologia , Conexina 43/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Junções Comunicantes/fisiologia , Nanopartículas , Tamanho da Partícula , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/metabolismo , Ratos , Sirtuína 1/metabolismo
13.
PLoS Biol ; 16(6): e2004408, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29927970

RESUMO

We show that the cyclin-dependent kinase inhibitor 1B (CDKN1B)/p27, previously known as a cell cycle inhibitor, is also localized within mitochondria. The migratory capacity of endothelial cells, which need intact mitochondria, is completely dependent on mitochondrial p27. Mitochondrial p27 improves mitochondrial membrane potential, increases adenosine triphosphate (ATP) content, and is required for the promigratory effect of caffeine. Domain mapping of p27 revealed that the N-terminus and C-terminus are required for those improvements. Further analysis of those regions revealed that the translocation of p27 into the mitochondria and its promigratory activity depend on serine 10 and threonine 187. In addition, mitochondrial p27 protects cardiomyocytes against apoptosis. Moreover, mitochondrial p27 is necessary and sufficient for cardiac myofibroblast differentiation. In addition, p27 deficiency and aging decrease respiration in heart mitochondria. Caffeine does not increase respiration in p27-deficient animals, whereas aged mice display improvement after 10 days of caffeine in drinking water. Moreover, caffeine induces transcriptome changes in a p27-dependent manner, affecting mostly genes relevant for mitochondrial processes. Caffeine also reduces infarct size after myocardial infarction in prediabetic mice and increases mitochondrial p27. Our data characterize mitochondrial p27 as a common denominator that improves mitochondria-dependent processes and define an increase in mitochondrial p27 as a new mode of action of caffeine.


Assuntos
Cafeína/farmacologia , Cardiotônicos/farmacologia , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Mitocôndrias/metabolismo , Infarto do Miocárdio/patologia , Miócitos Cardíacos/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/fisiologia , Diferenciação Celular/fisiologia , Linhagem Celular , Movimento Celular/fisiologia , Inibidor de Quinase Dependente de Ciclina p27/genética , Células Endoteliais/fisiologia , Células HEK293 , Humanos , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/citologia , Transporte Proteico/fisiologia
14.
Nanomaterials (Basel) ; 8(4)2018 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-29690640

RESUMO

The epidermal growth factor receptor (EGFR) is an abundant membrane protein, which is essential for regulating many cellular processes including cell proliferation. In our earlier studies, we observed an activation of the EGFR and subsequent signaling events after the exposure of epithelial cells to carbon nanoparticles. In the current study, we describe molecular mechanisms that allow for discriminating carbon nanoparticle-specific from ligand-dependent receptor activation. Caveolin-1 is a key player that co-localizes with the EGFR upon receptor activation by carbon nanoparticles. This specific process mediated by nanoparticle-induced reactive oxygen species and the accumulation of ceramides in the plasma membrane is not triggered when cells are exposed to non-nano carbon particles or the physiological ligand EGF. The role of caveolae formation was demonstrated by the induction of higher order structures of caveolin-1 and by the inhibition of caveolae formation. Using an in vivo model with genetically modified mice lacking caveolin-1, it was possible to demonstrate that carbon nanoparticles in vivo trigger EGFR downstream signaling cascades via caveolin-1. The identified molecular mechanisms are, therefore, of toxicological relevance for inhaled nanoparticles. However, nanoparticles that are intentionally applied to humans might cause side effects depending on this phenomenon.

15.
Antioxid Redox Signal ; 26(12): 616-629, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-27835927

RESUMO

The APEX nuclease (multifunctional DNA repair enzyme) 1 (APEX1) has a disordered N-terminus, a redox, and a DNA repair domain. APEX1 has anti-apoptotic properties, which have been linked to both domains depending on cell type and experimental conditions. AIMS: As protection against apoptosis is a hallmark of vessel integrity, we wanted to elucidate whether APEX1 acts anti-apoptotic in primary human endothelial cells and, if so, what the underlying mechanisms are. RESULTS: APEX1 inhibits apoptosis in endothelial cells by reducing Cathepsin D (CatD) cleavage, potentially by binding to the unprocessed form. Diminished CatD activation results in increased Thioredoxin-1 protein levels leading to reduced Caspase 3 activation. Consequently, apoptosis rates are decreased. This depends on the first twenty amino acids in APEX1, because APEX1 (21-318) induces CatD activity, decreases Thioredoxin-1 protein levels, and, thus, increases Caspase 3 activity and apoptosis. Along the same lines, APEX1 (1-20) inhibits Caspase 3 cleavage and apoptosis. Furthermore, re-expression of Thioredoxin-1 via lentiviral transduction rescues endothelial cells from APEX1 (21-318)-induced apoptosis. In an in vivo model of restenosis, which is characterized by oxidative stress, endothelial activation, and smooth muscle cell proliferation, Thioredoxin-1 protein levels are reduced in the endothelium of the carotids. INNOVATION: APEX1 acts anti-apoptotic in endothelial cells. This anti-apoptotic effect depends on the first 20 amino acids of APEX1. CONCLUSION: As proper function of the endothelium during life span is a hallmark for individual health span, a detailed characterization of the functions of the APEX1N-terminus is required to understand all its cellular properties. Antioxid. Redox Signal. 26, 616-629.


Assuntos
Apoptose/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Oclusão de Enxerto Vascular/genética , Tiorredoxinas/biossíntese , Aminoácidos/genética , Aminoácidos/metabolismo , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patologia , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Caspase 3/genética , Caspase 3/metabolismo , Catepsina D/genética , Proliferação de Células/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/biossíntese , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Oclusão de Enxerto Vascular/patologia , Humanos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Estresse Oxidativo/genética , Tiorredoxinas/genética
16.
Antioxid Redox Signal ; 26(12): 630-644, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27923281

RESUMO

SIGNIFICANCE: Redox signaling is one of the key elements involved in cardiovascular diseases. Two important molecules are the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and the oxidoreductase thioredoxin-1 (Trx-1). Recent Advances: During the previous years, a lot of studies investigated Nrf2 and Trx-1 as protective proteins in cardiovascular disorders. Moreover, post-translational modifications of those molecules were identified that play an important role in the cardiovascular system. This review will summarize changes in the vasculature in atherosclerosis and ischemia reperfusion injury of the heart and the newest findings achieved with Nrf2 and Trx-1 therein. Interestingly, Nrf2 and Trx-1 can act together as well as independently of each other in protection against atherosclerosis and ischemia and reperfusion injury. CRITICAL ISSUES: In principle, pharmacological activation of a transcription factor-like Nrf2 can be dangerous, since a transcription regulator has multiple targets and the pleiotropic effects of such activation should not be ignored. Moreover, overactivation of Nrf2 as well as long-term treatment with Trx-1 could be deleterious for the cardiovascular system. FUTURE DIRECTIONS: Therefore, the length of treatment with Nrf2 activators and/or Trx-1 has first to be studied in more detail in cardiovascular disorders. Moreover, a combination of Nrf2 activators and Trx-1 should be investigated and taken into consideration. Antioxid. Redox Signal. 26, 630-644.


Assuntos
Antioxidantes/uso terapêutico , Aterosclerose/genética , Isquemia Miocárdica/tratamento farmacológico , Fator 2 Relacionado a NF-E2/genética , Tiorredoxinas/genética , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/patologia , Inibidores Enzimáticos/uso terapêutico , Coração/fisiopatologia , Humanos , Isquemia Miocárdica/genética , Isquemia Miocárdica/patologia , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/genética , Tiorredoxinas/antagonistas & inibidores , Ativação Transcricional/efeitos dos fármacos
17.
Clin Orthop Relat Res ; 471(9): 3029-35, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23609810

RESUMO

BACKGROUND: Vitamin D plays an essential role in bone health and muscle function. Some studies have shown a widespread rate of vitamin D deficiency in the general population, but few have reported on the vitamin D status of orthopaedic patients. QUESTIONS/PURPOSES: We investigated (1) the extent of hypovitaminosis D in orthopaedic patients, (2) seasonal variations in vitamin D levels, and (3) possible risk factors for insufficient vitamin D levels. METHODS: Vitamin D levels in 1119 patients consecutively admitted to an orthopaedic surgery department in 2011 were measured. To investigate the correlation between climate factors and vitamin D levels, the sunshine hours for each month in 2011 were collected by Deutscher Wetterdienst (the German weather service) in the region where most tested patients lived. The prevalence of normal (> 30 ng/mL), insufficient (20-30 ng/mL), and deficient (< 20 ng/mL) 25-hydroxyvitamin D levels was determined. Univariate and multivariate analyses were used to assess risk factors for insufficient vitamin D levels. RESULTS: Overall, 84% of patients had insufficient levels of vitamin D and 60% were vitamin D deficient. Only 15% were in the target range of 30 to 60 ng/mL. The prevalence of low vitamin D levels was greater during winter and months with fewer sunshine hours. Vitamin D levels did not vary according to age, sex, and disease. Individuals with obesity, hypertension, and osteoporosis were more likely to have low vitamin D levels compared with their healthy counterparts. CONCLUSIONS: There is an alarmingly high rate of hypovitaminosis D and vitamin D deficiency among orthopaedic patients in this region of Germany, whose latitude (50° N) is approximately the same as those of Vancouver (49°, 15' N) and Paris (48°, 51' N). Given the well-known effects on bone metabolism and muscle health, low vitamin D levels may negatively affect patients. Screening and treating hypovitaminosis D appears to be important in this patient population.


Assuntos
Epidemias , Osteoporose/epidemiologia , Deficiência de Vitamina D/epidemiologia , Vitamina D/análogos & derivados , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Alemanha/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Osteoporose/sangue , Prevalência , Fatores de Risco , Estações do Ano , Luz Solar , Vitamina D/sangue , Deficiência de Vitamina D/sangue , População Branca
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...