Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cryst Growth Des ; 23(6): 3996-4012, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37304401

RESUMO

We report the structural and magnetic properties of two new Mn3+ complex cations in the spin crossover (SCO) [Mn(R-sal2323)]+ series, in lattices with seven different counterions in each case. We investigate the effect on the Mn3+ spin state of appending electron-withdrawing and electron-donating groups on the phenolate donors of the ligand. This was achieved by substitution of the ortho and para positions on the phenolate donors with nitro and methoxy substituents in both possible geometric isomeric forms. Using this design paradigm, the [MnL1]+ (a) and [MnL2]+ (b) complex cations were prepared by complexation of Mn3+ to the hexadentate Schiff base ligands with 3-nitro-5-methoxy-phenolate or 3-methoxy-5-nitro-phenolate substituents, respectively. A clear trend emerges with adoption of the spin triplet form in complexes 1a-7a, with the 3-nitro-5-methoxy-phenolate donors, and spin triplet, spin quintet and thermal SCO in complexes 1b-7b with the 3-methoxy-5-nitro-phenolate ligand isomer. The outcomes are discussed in terms of geometric and steric factors in the 14 new compounds and by a wider analysis of electronic choices of Mn3+ with related ligands by comparison of bond length and angular distortion data of previously reported analogues in the [Mn(R-sal2323)]+ family. The structural and magnetic data published to date suggest a barrier to switching may exist for high spin forms of Mn3+ in those complexes with the longest bond lengths and highest distortion parameters. A barrier to switching from low spin to high spin is less clear but may operate in the seven [Mn(3-NO2-5-OMe-sal2323)]+ complexes 1a-7a reported here which were all low spin in the solid state at room temperature.

2.
Angew Chem Int Ed Engl ; 61(4): e202114021, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-34761504

RESUMO

A MnIII spin crossover complex with atypical two-step hysteretic thermal switching at 74 K and 84 K shows rich structural-magnetic interplay and magnetic-field-induced spin state switching below 14 T with an onset below 5 T. The spin states, structures, and the nature of the phase transitions are elucidated via X-ray and magnetization measurements. An unusual intermediate phase containing four individual sites, where 1 / 4 are in a pure low spin state, is observed. The splitting of equivalent sites in the high temperature phase into four inequivalent sites is due to a structural reorganization involving a primary and a secondary symmetry-breaking order parameter that induces a crystal system change from orthorhombic→monoclinic and a cell doubling. Further cooling leads to a reconstructive phase transition and a monoclinic low-temperature phase with two inequivalent low-spin sites. The coupling between the order parameters is identified in the framework of Landau theory.

3.
Inorg Chem ; 60(9): 6167-6175, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33331784

RESUMO

We investigate giant magnetoelectric coupling at a Mn3+ spin crossover in [MnIIIL]BPh4 (L = (3,5-diBr-sal)2323) with a field-induced permanent switching of the structural, electric, and magnetic properties. An applied magnetic field induces a first-order phase transition from a high spin/low spin (HS-LS) ordered phase to a HS-only phase at 87.5 K that remains after the field is removed. We observe this unusual effect for DC magnetic fields as low as 8.7 T. The spin-state switching driven by the magnetic field in the bistable molecular material is accompanied by a change in electric polarization amplitude and direction due to a symmetry-breaking phase transition between polar space groups. The magnetoelectric coupling occurs due to a γη2 coupling between the order parameter γ related to the spin-state bistability and the symmetry-breaking order parameter η responsible for the change of symmetry between polar structural phases. We also observe conductivity occurring during the spin crossover and evaluate the possibility that it results from conducting phase boundaries. We perform ab initio calculations to understand the origin of the electric polarization change as well as the conductivity during the spin crossover. Thus, we demonstrate a giant magnetoelectric effect with a field-induced electric polarization change that is 1/10 of the record for any material.

4.
Angew Chem Int Ed Engl ; 59(32): 13305-13312, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32358911

RESUMO

Domain wall motion is detected for the first time during the transition to a ferroelastic and spin state ordered phase of a spin crossover complex. Single-crystal X-ray diffraction and resonant ultrasound spectroscopy (RUS) revealed two distinct symmetry-breaking phase transitions in the mononuclear Mn3+ compound [Mn(3,5-diBr-sal2 (323))]BPh4 , 1. The first at 250 K, involves the space group change Cc→Pc and is thermodynamically continuous, while the second, Pc→P1 at 85 K, is discontinuous and related to spin crossover and spin state ordering. Stress-induced domain wall mobility was interpreted on the basis of a steep increase in acoustic loss immediately below the the Pc-P1 transition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...