Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 33(2): 228-240.e7, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36516849

RESUMO

Proper regulation of the bacterial cell envelope is critical for cell survival. Identification and characterization of enzymes that maintain cell envelope homeostasis is crucial, as they can be targets for effective antibiotics. In this study, we have identified a novel enzyme, called EstG, whose activity protects cells from a variety of lethal assaults in the ⍺-proteobacterium Caulobacter crescentus. Despite homology to transpeptidase family cell wall enzymes and an ability to protect against cell-wall-targeting antibiotics, EstG does not demonstrate biochemical activity toward cell wall substrates. Instead, EstG is genetically connected to the periplasmic enzymes OpgH and BglX, responsible for synthesis and hydrolysis of osmoregulated periplasmic glucans (OPGs), respectively. The crystal structure of EstG revealed similarities to esterases and transesterases, and we demonstrated esterase activity of EstG in vitro. Using biochemical fractionation, we identified a cyclic hexamer of glucose as a likely substrate of EstG. This molecule is the first OPG described in Caulobacter and establishes a novel class of OPGs, the regulation and modification of which are important for stress survival and adaptation to fluctuating environments. Our data indicate that EstG, BglX, and OpgH comprise a previously unknown OPG pathway in Caulobacter. Ultimately, we propose that EstG is a novel enzyme that instead of acting on the cell wall, acts on cyclic OPGs to provide resistance to a variety of cellular stresses.


Assuntos
Caulobacter crescentus , Caulobacter , Caulobacter/metabolismo , Esterases , Membrana Celular/metabolismo , Parede Celular/metabolismo , Caulobacter crescentus/metabolismo , Antibacterianos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
2.
J Synchrotron Radiat ; 29(Pt 6): 1480-1494, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36345756

RESUMO

The highly automated macromolecular crystallography beamline AMX/17-ID-1 is an undulator-based high-intensity (>5 × 1012 photons s-1), micro-focus (7 µm × 5 µm), low-divergence (1 mrad × 0.35 mrad) energy-tunable (5-18 keV) beamline at the NSLS-II, Brookhaven National Laboratory, Upton, NY, USA. It is one of the three life science beamlines constructed by the NIH under the ABBIX project and it shares sector 17-ID with the FMX beamline, the frontier micro-focus macromolecular crystallography beamline. AMX saw first light in March 2016 and started general user operation in February 2017. At AMX, emphasis has been placed on high throughput, high capacity, and automation to enable data collection from the most challenging projects using an intense micro-focus beam. Here, the current state and capabilities of the beamline are reported, and the different macromolecular crystallography experiments that are routinely performed at AMX/17-ID-1 as well as some plans for the near future are presented.


Assuntos
Síncrotrons , Cristalografia por Raios X , Substâncias Macromoleculares/química
3.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 7): 281-288, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35787556

RESUMO

KAMO and BLEND provide particularly effective tools to automatically manage the merging of large numbers of data sets from serial crystallography. The requirement for manual intervention in the process can be reduced by extending BLEND to support additional clustering options such as the use of more accurate cell distance metrics and the use of reflection-intensity correlation coefficients to infer `distances' among sets of reflections. This increases the sensitivity to differences in unit-cell parameters and allows clustering to assemble nearly complete data sets on the basis of intensity or amplitude differences. If the data sets are already sufficiently complete to permit it, one applies KAMO once and clusters the data using intensities only. When starting from incomplete data sets, one applies KAMO twice, first using unit-cell parameters. In this step, either the simple cell vector distance of the original BLEND or the more sensitive NCDist is used. This step tends to find clusters of sufficient size such that, when merged, each cluster is sufficiently complete to allow reflection intensities or amplitudes to be compared. One then uses KAMO again using the correlation between reflections with a common hkl to merge clusters in a way that is sensitive to structural differences that may not have perturbed the unit-cell parameters sufficiently to make meaningful clusters. Many groups have developed effective clustering algorithms that use a measurable physical parameter from each diffraction still or wedge to cluster the data into categories which then can be merged, one hopes, to yield the electron density from a single protein form. Since these physical parameters are often largely independent of one another, it should be possible to greatly improve the efficacy of data-clustering software by using a multi-stage partitioning strategy. Here, one possible approach to multi-stage data clustering is demonstrated. The strategy is to use unit-cell clustering until the merged data are sufficiently complete and then to use intensity-based clustering. Using this strategy, it is demonstrated that it is possible to accurately cluster data sets from crystals that have subtle differences.


Assuntos
Algoritmos , Software , Análise por Conglomerados , Cristalografia por Raios X , Proteínas/química
4.
Sci Rep ; 12(1): 12197, 2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842458

RESUMO

Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), threatens global public health. The world needs rapid development of new antivirals and vaccines to control the current pandemic and to control the spread of the variants. Among the proteins synthesized by the SARS-CoV-2 genome, main protease (Mpro also known as 3CLpro) is a primary drug target, due to its essential role in maturation of the viral polyproteins. In this study, we provide crystallographic evidence, along with some binding assay data, that three clinically approved anti hepatitis C virus drugs and two other drug-like compounds covalently bind to the Mpro Cys145 catalytic residue in the active site. Also, molecular docking studies can provide additional insight for the design of new antiviral inhibitors for SARS-CoV-2 using these drugs as lead compounds. One might consider derivatives of these lead compounds with higher affinity to the Mpro as potential COVID-19 therapeutics for further testing and possibly clinical trials.


Assuntos
Tratamento Farmacológico da COVID-19 , Antivirais/uso terapêutico , Proteases 3C de Coronavírus , Cisteína Endopeptidases/metabolismo , Hepacivirus/metabolismo , Humanos , Simulação de Acoplamento Molecular , Inibidores de Proteases/química , SARS-CoV-2 , Proteínas não Estruturais Virais/genética
5.
Acta Crystallogr D Struct Biol ; 78(Pt 3): 268-277, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35234141

RESUMO

One often observes small but measurable differences in the diffraction data measured from different crystals of a single protein. These differences might reflect structural differences in the protein and may reveal the natural dynamism of the molecule in solution. Partitioning these mixed-state data into single-state clusters is a critical step that could extract information about the dynamic behavior of proteins from hundreds or thousands of single-crystal data sets. Mixed-state data can be obtained deliberately (through intentional perturbation) or inadvertently (while attempting to measure highly redundant single-crystal data). To the extent that different states adopt different molecular structures, one expects to observe differences in the crystals; each of the polystates will create a polymorph of the crystals. After mixed-state diffraction data have been measured, deliberately or inadvertently, the challenge is to sort the data into clusters that may represent relevant biological polystates. Here, this problem is addressed using a simple multi-factor clustering approach that classifies each data set using independent observables, thereby assigning each data set to the correct location in conformational space. This procedure is illustrated using two independent observables, unit-cell parameters and intensities, to cluster mixed-state data from chymotrypsinogen (ChTg) crystals. It is observed that the data populate an arc of the reaction trajectory as ChTg is converted into chymotrypsin.


Assuntos
Proteínas , Modelos Moleculares , Conformação Molecular , Estrutura Molecular
7.
J Synchrotron Radiat ; 28(Pt 5): 1649-1661, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34475312

RESUMO

Here we present two robotic sample changers integrated into the experimental stations for the macromolecular crystallography (MX) beamlines AMX and FMX, and the biological small-angle scattering (bioSAXS) beamline LiX. They enable fully automated unattended data collection and remote access to the beamlines. The system designs incorporate high-throughput, versatility, high-capacity, resource sharing and robustness. All systems are centered around a six-axis industrial robotic arm coupled with a force torque sensor and in-house end effectors (grippers). They have the same software architecture and the facility standard EPICS-based BEAST alarm system. The MX system is compatible with SPINE bases and Unipucks. It comprises a liquid nitrogen dewar holding 384 samples (24 Unipucks) and a stay-cold gripper, and utilizes machine vision software to track the sample during operations and to calculate the final mount position on the goniometer. The bioSAXS system has an in-house engineered sample storage unit that can hold up to 360 samples (20 sample holders) which keeps samples at a user-set temperature (277 K to 300 K). The MX systems were deployed in early 2017 and the bioSAXS system in early 2019.


Assuntos
Cristalografia por Raios X/métodos , Substâncias Macromoleculares/química , Robótica/métodos , Desenho de Equipamento , Espalhamento a Baixo Ângulo , Software , Síncrotrons , Raios X
8.
J Synchrotron Radiat ; 28(Pt 2): 650-665, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33650577

RESUMO

Two new macromolecular crystallography (MX) beamlines at the National Synchrotron Light Source II, FMX and AMX, opened for general user operation in February 2017 [Schneider et al. (2013). J. Phys. Conf. Ser. 425, 012003; Fuchs et al. (2014). J. Phys. Conf. Ser. 493, 012021; Fuchs et al. (2016). AIP Conf. Proc. SRI2015, 1741, 030006]. FMX, the micro-focusing Frontier MX beamline in sector 17-ID-2 at NSLS-II, covers a 5-30 keV photon energy range and delivers a flux of 4.0 × 1012 photons s-1 at 1 Šinto a 1 µm × 1.5 µm to 10 µm × 10 µm (V × H) variable focus, expected to reach 5 × 1012 photons s-1 at final storage-ring current. This flux density surpasses most MX beamlines by nearly two orders of magnitude. The high brightness and microbeam capability of FMX are focused on solving difficult crystallographic challenges. The beamline's flexible design supports a wide range of structure determination methods - serial crystallography on micrometre-sized crystals, raster optimization of diffraction from inhomogeneous crystals, high-resolution data collection from large-unit-cell crystals, room-temperature data collection for crystals that are difficult to freeze and for studying conformational dynamics, and fully automated data collection for sample-screening and ligand-binding studies. FMX's high dose rate reduces data collection times for applications like serial crystallography to minutes rather than hours. With associated sample lifetimes as short as a few milliseconds, new rapid sample-delivery methods have been implemented, such as an ultra-high-speed high-precision piezo scanner goniometer [Gao et al. (2018). J. Synchrotron Rad. 25, 1362-1370], new microcrystal-optimized micromesh well sample holders [Guo et al. (2018). IUCrJ, 5, 238-246] and highly viscous media injectors [Weierstall et al. (2014). Nat. Commun. 5, 3309]. The new beamline pushes the frontier of synchrotron crystallography and enables users to determine structures from difficult-to-crystallize targets like membrane proteins, using previously intractable crystals of a few micrometres in size, and to obtain quality structures from irregular larger crystals.


Assuntos
Síncrotrons , Cristalografia , Cristalografia por Raios X , Coleta de Dados , Substâncias Macromoleculares , Viscosidade
9.
J Phys Condens Matter ; 32(37): 374008, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32568740

RESUMO

In this paper, we summarize briefly some of the future trends in synchrotron science as seen at the National Synchrotron Light Source II, a new, low emittance source recently commissioned at Brookhaven National Laboratory. We touch upon imaging techniques, the study of dynamics, the increasing use of multimodal approaches, the vital importance of data science, and other enabling technologies. Each are presently undergoing a time of rapid change, driving the field of synchrotron science forward at an ever increasing pace. It is truly an exciting time and one in which Roger Cowley, to whom this journal issue is dedicated, would surely be both invigorated by, and at the heart of.

10.
Struct Dyn ; 7(1): 014302, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31934601

RESUMO

In macromolecular crystallography, higher flux, smaller beams, and faster detectors open the door to experiments with very large numbers of very small samples that can reveal polymorphs and dynamics but require re-engineering of approaches to the clustering of images both at synchrotrons and XFELs (X-ray free electron lasers). The need for the management of orders of magnitude more images and limitations of file systems favor a transition from simple one-file-per-image systems such as CBF to image container systems such as HDF5. This further increases the load on computers and networks and requires a re-examination of the presentation of metadata. In this paper, we discuss three important components of this problem-improved approaches to the clustering of images to better support experiments on polymorphs and dynamics, recent and upcoming changes in metadata for Eiger images, and software to rapidly validate images in the revised Eiger format.

11.
Biochim Biophys Acta Proteins Proteom ; 1868(3): 140361, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31923589

RESUMO

SEA domains are ubiquitous in large proteins associated with highly glycosylated environments. Certain SEA domains undergo intramolecular proteolysis involving a nucleophilic attack of a serine hydroxyl group on the preceding glycine carbonyl. The mucin-1 (MUC1) SEA domain has been extensively investigated as a model of intramolecular proteolysis. Since neither a general base, a general acid, nor an oxyanion hole could be identified in MUC1 SEA, it has been suggested that proteolysis is accelerated by a non-planarity of the scissile peptide bond imposed by protein folding. A reactant distorted peptide bond has been also invoked to explain the autoproteolysis of several unrelated proteins. However, the only evidence of peptide distortion in MUC1 SEA stems from molecular dynamic simulations of the reactant modeled upon a single NMR structure of the cleaved product. We report the first high-resolution X-ray structure of cleaved MUC1 SEA. Structural comparison with uncleaved SEA domains suggests that the number of residues evolutionarily inserted in the cleaved loop of MUC1 SEA precludes the formation of a properly hydrogen-bonded beta turn. By sequence analysis, we show that this conformational frustration is shared by all known cleaved SEA domains. In addition, alternative conformations of the uncleaved precursor could be modeled in which the scissile peptide bond is planar. The implications of these structures for autoproteolysis are discussed in the light of the previous research on autoproteolysis.


Assuntos
Mucina-1/química , Cristalografia por Raios X , Modelos Moleculares , Mucina-1/metabolismo , Domínios Proteicos , Proteólise
12.
Molecules ; 24(3)2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30704096

RESUMO

Advances in synchrotron technology are changing the landscape of macromolecular crystallography. The two recently opened beamlines at NSLS-II-AMX and FMX-deliver high-flux microfocus beams that open new possibilities for crystallographic data collection. They are equipped with state-of-the-art experimental stations and automation to allow data collection on previously intractable crystals. Optimized data collection strategies allow users to tailor crystal positioning to optimally distribute the X-ray dose over its volume. Vector data collection allows the user to define a linear trajectory along a well diffracting volume of the crystal and perform rotational data collection while moving along the vector. This is particularly well suited to long, thin crystals. We describe vector data collection of three proteins-Akt1, PI3Kα, and CDP-Chase-to demonstrate its application and utility. For smaller crystals, we describe two methods for multicrystal data collection in a single loop, either manually selecting multiple centers (using H108A-PHM as an example), or "raster-collect", a more automated approach for a larger number of crystals (using CDP-Chase as an example).


Assuntos
Cristalografia por Raios X , Modelos Moleculares , Proteínas/química , Cristalografia por Raios X/métodos , Fosfatidilinositol 3-Quinases/química , Conformação Proteica , Pirofosfatases/química
13.
J Biol Chem ; 293(48): 18574-18584, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30355734

RESUMO

The final steps of cell-wall biosynthesis in bacteria are carried out by penicillin-binding proteins (PBPs), whose transpeptidase domains form the cross-links in peptidoglycan chains that define the bacterial cell wall. These enzymes are the targets of ß-lactam antibiotics, as their inhibition reduces the structural integrity of the cell wall. Bacterial resistance to antibiotics is a rapidly growing concern; however, the structural underpinnings of PBP-derived antibiotic resistance are poorly understood. PBP4 and PBP5 are low-affinity, class B transpeptidases that confer antibiotic resistance to Enterococcus faecalis and Enterococcus faecium, respectively. Here, we report the crystal structures of PBP4 (1.8 Å) and PBP5 (2.7 Å) in their apo and acyl-enzyme complexes with the ß-lactams benzylpenicillin, imipenem, and ceftaroline. We found that, although these three ß-lactams adopt geometries similar to those observed in other class B PBP structures, there are small, but significant, differences that likely decrease antibiotic efficacy. Further, we also discovered that the N-terminal domain extensions in this class of PBPs undergo large rigid-body rotations without impacting the structure of the catalytic transpeptidase domain. Together, our findings are defining the subtle functional and structural differences in the Enterococcus PBPs that allow them to support transpeptidase activity while also conferring bacterial resistance to antibiotics that function as substrate mimics.


Assuntos
Proteínas de Bactérias/química , Enterococcus faecalis/metabolismo , Enterococcus faecium/metabolismo , Proteínas de Ligação às Penicilinas/química , Isoformas de Proteínas/química , Resistência beta-Lactâmica , Acilação , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Carbapenêmicos/farmacologia , Domínio Catalítico , Cefalosporinas/farmacologia , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecium/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/isolamento & purificação , Proteínas de Ligação às Penicilinas/metabolismo , Penicilinas/metabolismo , Conformação Proteica , Domínios Proteicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/isolamento & purificação , Resistência beta-Lactâmica/genética
14.
J Synchrotron Radiat ; 25(Pt 5): 1362-1370, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30179174

RESUMO

The Frontier Microfocus Macromolecular Crystallography (FMX) beamline at the National Synchrotron Light Source II with its 1 µm beam size and photon flux of 3 × 1012 photons s-1 at a photon energy of 12.66 keV has reached unprecedented dose rates for a structural biology beamline. The high dose rate presents a great advantage for serial microcrystallography in cutting measurement time from hours to minutes. To provide the instrumentation basis for such measurements at the full flux of the FMX beamline, a high-speed, high-precision goniometer based on a unique XYZ piezo positioner has been designed and constructed. The piezo-based goniometer is able to achieve sub-100 nm raster-scanning precision at over 10 grid-linepairs s-1 frequency for fly scans of a 200 µm-wide raster. The performance of the scanner in both laboratory and serial crystallography measurements up to the maximum frame rate of 750 Hz of the Eiger 16M's 4M region-of-interest mode has been verified in this work. This unprecedented experimental speed significantly reduces serial-crystallography data collection time at synchrotrons, allowing utilization of the full brightness of the emerging synchrotron radiation facilities.

15.
J Mol Biol ; 430(9): 1324-1335, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29573988

RESUMO

Tumor metastasis is responsible for ~90% of all cancer deaths. One of the key steps of tumor metastasis is tumor cell migration and invasion. Filopodia are cell surface extensions that are critical for tumor cell migration. Fascin protein is the main actin-bundling protein in filopodia. Small-molecule fascin inhibitors block tumor cell migration, invasion, and metastasis. Here we present the structural basis for the mechanism of action of these small-molecule fascin inhibitors. X-ray crystal structural analysis of a complex of fascin and a fascin inhibitor shows that binding of the fascin inhibitor to the hydrophobic cleft between the domains 1 and 2 of fascin induces a ~35o rotation of domain 1, leading to the distortion of both the actin-binding sites 1 and 2 on fascin. Furthermore, the crystal structures of an inhibitor alone indicate that the conformations of the small-molecule inhibitors are dynamic. Mutations of the inhibitor-interacting residues decrease the sensitivity of fascin to the inhibitors. Our studies provide structural insights into the molecular mechanism of fascin protein function as well as the action of small-molecule fascin inhibitors.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo , Mutação , Bibliotecas de Moléculas Pequenas/farmacologia , Sítios de Ligação , Proteínas de Transporte/genética , Cristalografia por Raios X , Humanos , Proteínas dos Microfilamentos/genética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Bibliotecas de Moléculas Pequenas/química
16.
J Biol Chem ; 290(42): 25670-85, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26304120

RESUMO

The final step of peptidoglycan (PG) biosynthesis in bacteria involves cross-linking of peptide side chains. This step in Mycobacterium tuberculosis is catalyzed by ld- and dd-transpeptidases that generate 3→3 and 4→3 transpeptide linkages, respectively. M. tuberculosis PG is predominantly 3→3 cross-linked, and LdtMt2 is the dominant ld-transpeptidase. There are four additional sequence paralogs of LdtMt2 encoded by the genome of this pathogen, and the reason for this apparent redundancy is unknown. Here, we studied one of the paralogs, LdtMt5, and found it to be structurally and functionally distinct. The structures of apo-LdtMt5 and its meropenem adduct presented here demonstrate that, despite overall architectural similarity to LdtMt2, the LdtMt5 active site has marked differences. The presence of a structurally divergent catalytic site and a proline-rich C-terminal subdomain suggest that this protein may have a distinct role in PG metabolism, perhaps involving other cell wall-anchored proteins. Furthermore, M. tuberculosis lacking a functional copy of LdtMt5 displayed aberrant growth and was more susceptible to killing by crystal violet, osmotic shock, and select carbapenem antibiotics. Therefore, we conclude that LdtMt5 is not a functionally redundant ld-transpeptidase, but rather it serves a unique and important role in maintaining the integrity of the M. tuberculosis cell wall.


Assuntos
Parede Celular/fisiologia , Mycobacterium tuberculosis/enzimologia , Peptidil Transferases/metabolismo , Sequência de Aminoácidos , Catálise , Domínio Catalítico , Concentração de Íons de Hidrogênio , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Dados de Sequência Molecular , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/fisiologia , Peptidoglicano/metabolismo , Peptidil Transferases/química , Peptidil Transferases/genética , Conformação Proteica , Homologia de Sequência de Aminoácidos
17.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 3): 427-41, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25760593

RESUMO

Chiral control of crystallization has ample precedent in the small-molecule world, but relatively little is known about the role of chirality in protein crystallization. In this study, lysozyme was crystallized in the presence of the chiral additive 2-methyl-2,4-pentanediol (MPD) separately using the R and S enantiomers as well as with a racemic RS mixture. Crystals grown with (R)-MPD had the most order and produced the highest resolution protein structures. This result is consistent with the observation that in the crystals grown with (R)-MPD and (RS)-MPD the crystal contacts are made by (R)-MPD, demonstrating that there is preferential interaction between lysozyme and this enantiomer. These findings suggest that chiral interactions are important in protein crystallization.


Assuntos
Glicóis/química , Muramidase/química , Cristalografia por Raios X , Estrutura Terciária de Proteína
18.
Chem Biol ; 22(2): 161-8, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25660273

RESUMO

Chromobox homolog 7 (CBX7) plays an important role in gene transcription in a wide array of cellular processes, ranging from stem cell self-renewal and differentiation to tumor progression. CBX7 functions through its N-terminal chromodomain (ChD), which recognizes trimethylated lysine 27 of histone 3 (H3K27me3), a conserved epigenetic mark that signifies gene transcriptional repression. In this study, we report the discovery of small molecules that inhibit CBX7ChD binding to H3K27me3. Our crystal structures reveal the binding modes of these molecules that compete against H3K27me3 binding through interactions with key residues in the methyl-lysine binding pocket of CBX7ChD. We further show that a lead compound, MS37452, derepresses transcription of Polycomb repressive complex target gene p16/CDKN2A by displacing CBX7 binding to the INK4A/ARF locus in prostate cancer cells. These small molecules have the potential to be developed into high-potency chemical modulators that target CBX7 functions in gene transcription in different disease pathways.


Assuntos
Complexo Repressor Polycomb 1/química , Bibliotecas de Moléculas Pequenas/química , Sítios de Ligação , Linhagem Celular Tumoral , Inibidor p16 de Quinase Dependente de Ciclina/química , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Fluoresceína-5-Isotiocianato/química , Histonas/química , Histonas/metabolismo , Humanos , Lisina/química , Lisina/metabolismo , Metilação , Complexo Repressor Polycomb 1/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Bibliotecas de Moléculas Pequenas/metabolismo , Eletricidade Estática , Suramina/química , Suramina/metabolismo
19.
J Struct Funct Genomics ; 16(1): 1-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25421040

RESUMO

Phogrin/IA-2ß and ICA512/IA-2 are two paralogs receptor-type protein-tyrosine phosphatases (RPTP) that localize in secretory granules of various neuroendocrine cells. In pancreatic islet ß-cells, they participate in the regulation of insulin secretion, ensuring proper granulogenesis, and ß-cell proliferation. The role of their cytoplasmic tail has been partially unveiled, while that of their luminal region remains unclear. To advance the understanding of its structure-function relationship, the X-ray structure of the mature ectodomain of phogrin (ME phogrin) at pH 7.4 and 4.6 has been solved at 1.95- and 2.01-Å resolution, respectively. Similarly to the ME of ICA512, ME phogrin adopts a ferredoxin-like fold: a sheet of four antiparallel ß-strands packed against two α-helices. Sequence conservation among vertebrates, plants and insects suggests that the structural similarity extends to all the receptor family. Crystallized ME phogrin is monomeric, in agreement with solution studies but in striking contrast with the behavior of homodimeric ME ICA512. The structural details that may cause the quaternary structure differences are analyzed. The results provide a basis for building models of the overall orientation and oligomerization state of the receptor in biological membranes.


Assuntos
Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Tirosina Fosfatases Classe 8 Semelhantes a Receptores/química , Sequência de Aminoácidos , Sítios de Ligação/genética , Cristalografia por Raios X , Concentração de Íons de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Dobramento de Proteína , Multimerização Proteica , Proteínas Tirosina Fosfatases Classe 8 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 8 Semelhantes a Receptores/metabolismo , Homologia de Sequência de Aminoácidos , Soluções , Relação Estrutura-Atividade
20.
J Bacteriol ; 197(1): 188-200, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25331435

RESUMO

Staphylococcus aureus is responsible for a large number of diverse infections worldwide. In order to support its pathogenic lifestyle, S. aureus has to regulate the expression of virulence factors in a coordinated fashion. One of the central regulators of the S. aureus virulence regulatory networks is the transcription factor repressor of toxin (Rot). Rot plays a key role in regulating S. aureus virulence through activation or repression of promoters that control expression of a large number of critical virulence factors. However, the mechanism by which Rot mediates gene regulation has remained elusive. Here, we have determined the crystal structure of Rot and used this information to probe the contribution made by specific residues to Rot function. Rot was found to form a dimer, with each monomer harboring a winged helix-turn-helix (WHTH) DNA-binding motif. Despite an overall acidic pI, the asymmetric electrostatic charge profile suggests that Rot can orient the WHTH domain to bind DNA. Structure-based site-directed mutagenesis studies demonstrated that R(91), at the tip of the wing, plays an important role in DNA binding, likely through interaction with the minor groove. We also found that Y(66), predicted to bind within the major groove, contributes to Rot interaction with target promoters. Evaluation of Rot binding to different activated and repressed promoters revealed that certain mutations on Rot exhibit promoter-specific effects, suggesting for the first time that Rot differentially interacts with target promoters. This work provides insight into a precise mechanism by which Rot controls virulence factor regulation in S. aureus.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Repressoras/metabolismo , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidade , Proteínas de Bactérias/genética , Cristalografia por Raios X , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas de Membrana , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae , Staphylococcus aureus/genética , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...