Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38829386

RESUMO

Two pyrrolo-based compounds, 1H-pyrrolo[3,2-b]pyridine-3-carboxylic acid (L1) and 1H-pyrrolo[3,2-c]pyridine-4-carboxylic acid (L2), were employed for the detection of bovine serum albumin (BSA) by UV-Vis and fluorescence spectroscopic methods in phosphate buffer solution (pH = 7). In the presence of L1 and L2, the fluorescence emission of BSA at 340 nm was quenched and concomitantly a red-shifted emission band appeared at 420 nm (L1)/450 nm (L2). The fluorescence spectral changes indicate the protein-ligand complex formation between BSA and L1/L2. An isothermal titration calorimetry (ITC) experiment was conducted to determine the binding ability between BSA and L1/L2. The binding constants are found to be 4.45 ± 0.22 × 104 M-1 for L1 and 2.29 ± 0.11 × 104 M-1 for L2, respectively. The thermodynamic parameters were calculated from ITC measurements (i.e. ∆rH = -40 ± 2 kcal/mol, ∆rG = -4.57 ± 0.22 kcal/mol and -T∆rS = 35.4 ± 1.77 kcal/mol), which indicated that the protein-ligand complex formation between L1/L2 with BSA is mainly due to the electrostatic interactions. The protein-ligand interactions were studied by performing molecular docking. Further, the antibacterial assay of L1 and L2 was conducted against gram-positive and gram-negative bacterial strains in an effort to address the difficulties caused by the co-occurrence of antimicrobial and multidrug-resistant bacteria. E. coli and S. aureus were significantly inhibited by L1 and L2. The L1 exhibits 13, 12 and 15 mm, whereas L2 exhibits a 2, 3 and 5 mm zone of inhibition against S. aureus, S. pyogenes and E. coli, respectively. In silico molecular docking of L1 and L2 was performed with bacterial DNA gyrase to establish the intermolecular interactions. Finally, the in vitro cytotoxicity activities of the ligands L1 and L2 have been carried out using drosophila.

2.
Talanta ; 275: 126089, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608343

RESUMO

Water, although an important part of everyday life, is acts as one of the most significant contaminants in various applications such as biomedical monitoring, chemical production, petroleum-based fuel and food processing. In fact, the presence of water in other solvents is a huge concern. For the quantification of trace water content, different methods such as Karl-Fischer, electrochemical, nuclear magnetic resonance, chromatography, and thermogravimetric analysis have been used. Although every technique has its own benefit, each one suffers from several drawbacks that include high detection costs, lengthy procedures and specialized operations. Nowadays, the development of fluorescence-based chemical probes has become an exciting area of research for the quick and accurate estimation of water content in organic solvents. A variety of chemical processes such as hydrolysis reaction, metal ions promoted oxidation reaction, suppression of the -C═N isomerization, protonation and deprotonation reactions, and molecular aggregation have been well researched in the last few years for the fluorescent detection of trace water. These chemical processes eventually lead to different photophysical events such as aggregation-induced emission (AIE), aggregation-induced emission enhancement (AIEE), aggregation-caused quenching (ACQ), fluorescent resonance energy transfer (FRET), charge transfer, photo-induced electron transfer (PET), excited state intramolecular proton transfer (ESIPT) that are responsible for the detection. This review presents a summary of the fluorescence-based chemosensors reported in recent years. The design of water sensors, sensing mechanisms and their potential applications are reviewed and discussed.

3.
Methods ; 219: 127-138, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37832896

RESUMO

This manuscript introduces a pyrene-based Schiff base L by reacting pyrenecarboxaldehyde with 2-aminothiazole in equimolar ratio. The ligand L was characterized by various spectral data and single crystal. The water sensing ability of L was examined in different organic solvents. The weakly emissive L in DMSO showed a fluorescence enhancement upon the addition of water. The water-induced fluorescence enhancement of L was occurred due to the combined effect of aggregation-induced emission (AIE) phenomenon and suppression of photo-induced electron transfer (PET) process. Using L, the water in DMSO can be detected down to 0.50 wt% with a quantification limit of 1.52 wt%. The analytical novelty of the developed sensor L was validated by detecting moisture in a variety of raw food products.


Assuntos
Corantes Fluorescentes , Água , Água/química , Corantes Fluorescentes/química , Dimetil Sulfóxido , Bases de Schiff/química , Pirenos/química
4.
J Fluoresc ; 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37439921

RESUMO

An anthracene thiazole based Schiff base L was synthesized and employed for fluorescence switch-on detection of maleic acid in aqueous DMSO. The non-fluorescent L (10-5 M) showed an instantaneous and selective fluorescence enhancement at 506 nm upon interaction with maleic acid (10-5 M). Other potential carboxylic acids (10-5 M), such as malic acid, citric acid, acetic acid, cinnamic acid, tartaric acid, succinic acid, fumaric acid, oxalic acid and malonic acid failed to alter the chromo-fluorogenic properties of L. Probe L can be employed to detect maleic acid down to 2.74 × 10-6 M. The probe L showed good linearity from 2.97 to 6.87 µM. Analytical utility of L was examined by detecting maleic acid in various food additives and drosophila larvae.

5.
Chem Biol Interact ; 214: 10-7, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24560625

RESUMO

Naphthoquinone derivatives such as lapachol, plumbagin, dichloroallyl lawsone show anticancer activity and generally cytotoxicity measurements are carried out in presence of bovine serum albumin; so understanding on the ability of serum albumin binding with such derivatives are essential. We have investigated cytotoxicity and serum albumin binding of a series of structurally related naphthoquinone derivatives. Substrate dependency and high selectivity in binding of naphthoquinone tethered carboxylic acids or pyridines with bovine serum albumin (BSA) and human serum albumin (HSA) are observed. For example, the binding constant of BSA with 3-(1,4-dihydro-2-methyl-1,4-dioxonaphthalen-3yl-thio)propanoic acid is ∼594 times higher than 3-(1,4-dioxo-1,4-dihydronaphthalen-2-yl-amino)benzoic acid; whereas 4-(1,4-dioxo-1,4-dihydronaphthalen-2-yl-amino)benzoic acid shows ∼367 times higher binding constant than the latter compound. The BSA weakly bind to pyridine tethered naphthoquinones, whereas HSA does not binds with them. The binding constant of HSA with 2-(1,4-dihydro-2-methyl-1,4-dioxonaphthalene-3-ylthio)benzoic acid is 134 times higher than the HSA binding constant with 2,2'-(1,4-dihydro-1,4-dioxo-naphthalen-2,3-diylthio)dipropanoic acid. Among the naphthoquinone carboxylic acids, the 3-(1,4-dioxo-1,4-dihydronaphthalen-2-yl-amino)benzoic acid binds selectively to BSA, but it does not bind to HSA. The 2-hydroxybenzoic acid or 4-mercaptobenzoic acid strongly binds to BSA. The binding of BSA with 4-hydroxybenzoic acid or 2-mercaptobenzoic acid are insignificant. We have not observed clear relationships of structure of naphthoquinone derivatives versus serum albumin binding, but could identify the compound having the best IC50 values of cytotoxicity among the twelve naphthoquinone compounds. The compound 3-(1,2-dihydro-1,2-dioxonaphthalen-4-yl-thio)propanoic acid in four cancer cell lines has IC50 values in the range 2.7-7.6µM. This compound also has optimum binding constant with BSA (35.042×10(3)Lmol(-1)) or HSA (21.427×10(3)Lmol(-1)). The cytotoxicity values of the compounds were influenced by concentration of BSA.


Assuntos
Naftoquinonas/metabolismo , Soroalbumina Bovina/metabolismo , Linhagem Celular Tumoral , Polarização de Fluorescência , Humanos , Naftoquinonas/toxicidade , Ligação Proteica , Espectrofotometria/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA