Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inhal Toxicol ; 33(9-14): 334-346, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34890527

RESUMO

OBJECTIVE: Ethyltoluenes are isolated during crude oil refinement for use in gasoline and commercial products and are ubiquitous in the environment. However, minimal toxicity data are available. Previously, we identified 2-ethyltoluene (2-ET) as the most potent isomer via nose-only inhalation exposure in rodents. Here, we expanded the hazard characterization of 2-ET in two rodent models using whole-body inhalation exposure and evaluated the role of prenatal exposure. METHODS: Time-mated Hsd:Sprague Dawley® SD® rats were exposed to 0, 150, 300, 600, 900, or 1200 ppm 2-ET via inhalation starting on gestation day 6 until parturition. Rat offspring (n = 8/exposure/sex) were exposed to the same concentrations as the respective dams for 2 weeks after weaning. Adult male and female B6C3F1/N mice (n = 5/exposure/sex) were exposed to the same concentrations for 2 weeks. RESULTS AND DISCUSSION: Exposure to ≥600 ppm 2-ET produced acute toxicity in rats and mice characterized by large decreases in survival, body weight, adverse clinical observations, and diffuse nasal olfactory epithelium degeneration (rats) or necrosis (mice). Due to the early removal of groups ≥600 ppm, most endpoint evaluations focused on lower exposure groups. In 150 and 300 ppm exposure groups, reproductive performance and littering were not significantly changed and body weights in exposed rats and mice were 9-18% lower than controls. Atrophy of the olfactory epithelium and nerves was observed in all animals exposed to 150 and 300 ppm. These lesions were more severe in mice than in rats. CONCLUSION: Nasal lesions were observed in all animals after whole-body exposure up to 600 ppm 2-ET for 2 weeks. Future studies should focus on 2-ET metabolism and distribution to better understand species differences and refine hazard characterization of this understudied environmental contaminant.


Assuntos
Exposição por Inalação , Administração por Inalação , Animais , Feminino , Exposição por Inalação/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos , Gravidez , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley
2.
Am J Physiol Heart Circ Physiol ; 321(2): H309-H317, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34170196

RESUMO

Pulmonary hypertension (PH) observed during respiratory syncytial virus (RSV) bronchiolitis is associated with morbidity and mortality, especially in children with congenital heart disease. Yet, the pathophysiological mechanisms of RSV-associated PH remain unclear. Therefore, this study aimed to investigate the pathophysiological mechanism of RSV-associated PH. We used a translational mouse model of RSV-associated PH, in which wild-type (WT) and suppression of tumorigenicity 2 (ST2) knockout neonatal mice were infected with RSV at 5 days old and reinfected 4 wk later. The development of PH in WT mice following RSV reinfection was evidenced by elevated right ventricle systolic pressure, shortened pulmonary artery acceleration time (PAT), and decreased PAT/ejection time (ET) ratio. It coincided with the augmentation of periostin and IL-13 expression and increased arginase bioactivity by both arginase 1 and 2 as well as induction of nitric oxide synthase (NOS) uncoupling. Absence of ST2 signaling prevented RSV-reinfected mice from developing PH by suppressing NOS uncoupling. In summary, ST2 signaling was involved in the development of RSV-associated PH. ST2 signaling inhibition may be a novel therapeutic target for RSV-associated PH.NEW & NOTEWORTHY We report that the pathogenic role of ST2-mediated type 2 immunity and mechanisms contribute to RSV-associated pulmonary hypertension. Inhibiting ST2 signaling may be a novel therapeutic target for this condition.


Assuntos
Bronquiolite Viral/genética , Hipertensão Pulmonar/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Pulmão/metabolismo , Infecções por Vírus Respiratório Sincicial/genética , Animais , Animais Recém-Nascidos , Arginase/genética , Arginase/metabolismo , Bronquiolite Viral/complicações , Bronquiolite Viral/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/metabolismo , Interleucina-13/genética , Interleucina-13/metabolismo , Camundongos , Camundongos Knockout , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Reinfecção , Infecções por Vírus Respiratório Sincicial/complicações , Infecções por Vírus Respiratório Sincicial/metabolismo , Vírus Sinciciais Respiratórios
3.
Sci Rep ; 8(1): 11034, 2018 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-30038294

RESUMO

Respiratory syncytial virus (RSV) infection is the most frequent cause of hospitalization in infants and young children worldwide. Although mucosal RSV vaccines can reduce RSV disease burden, little is known about mucosal immune response capabilities in children. Neonatal or adult mice were infected with RSV; a subset of neonatal mice received interferon alpha (IFN-α) (intranasal) prior to RSV infection. B cells, B cell activating factor (BAFF) and IgA were measured by flow cytometry. RSV specific IgA was measured in nasal washes. Nasal associated lymphoid tissue (NALT) and lungs were stained for BAFF and IgA. Herein, we show in a mouse model of RSV infection that IFN-α plays a dual role as an antiviral and immune modulator and age-related differences in IgA production upon RSV infection can be overcome by IFN-α administration. IFN-α administration before RSV infection in neonatal mice increased RSV-specific IgA production in the nasal mucosa and induced expression of the B-cell activating factor BAFF in NALT. These findings are important, as mucosal antibodies at the infection site, and not serum antibodies, have been shown to protect human adults from experimental RSV infection.


Assuntos
Imunoglobulina A/imunologia , Imunoglobulina A/metabolismo , Interferon Tipo I/metabolismo , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/metabolismo , Animais , Fator Ativador de Células B/metabolismo , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos BALB C , Palivizumab/uso terapêutico , Reação em Cadeia da Polimerase em Tempo Real , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico
4.
Am J Physiol Heart Circ Physiol ; 315(3): H581-H589, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29906223

RESUMO

Pulmonary hypertension (PH) has been observed in up to 75% of infants with moderate to severe respiratory syncytial virus (RSV) bronchiolitis and is associated with significant morbidity and mortality in infants with congenital heart disease. The purpose of the present study was to establish a mouse model of PH secondary to RSV bronchiolitis that mimics the disease etiology as it occurs in infants. Neonatal mice were infected with RSV at 5 days of age and then reinfected 4 wk later. Serum-free medium was administered to age-matched mice as a control. Echocardiography and right ventricular systolic pressure (RVSP) measurements via right jugular vein catheterization were conducted 5 and 6 days after the second infection, respectively. Peripheral capillary oxygen saturation monitoring did not indicate hypoxia at 2-4 days post-RSV infection, before reinfection, and at 2-7 days after reinfection. RSV-infected mice had significantly higher RVSP than control mice. Pulsed-wave Doppler recording of the pulmonary blood flow by echocardiogram demonstrated a significantly shortened pulmonary artery acceleration time and decreased pulmonary artery acceleration time-to-ejection time ratio in RSV-infected mice. Morphometry showed that RSV-infected mice exhibited a significantly higher pulmonary artery medial wall thickness and had an increased number of muscularized pulmonary arteries compared with control mice. These findings, confirmed by RVSP measurements, demonstrate the development of PH in the lungs of mice infected with RSV as neonates. This animal model can be used to study the pathogenesis of PH secondary to RSV bronchiolitis and to assess the effect of treatment interventions. NEW & NOTEWORTHY This is the first mouse model of respiratory syncytial virus-induced pulmonary hypertension, to our knowledge. This model will allow us to decipher molecular mechanisms responsible for the pathogenesis of pulmonary hypertension secondary to respiratory syncytial virus bronchiolitis with the use of knockout and/or transgenic animals and to monitor therapeutic effects with echocardiography.


Assuntos
Bronquiolite Viral/complicações , Modelos Animais de Doenças , Hipertensão Pulmonar/virologia , Infecções por Vírus Respiratório Sincicial/complicações , Animais , Pressão Sanguínea , Bronquiolite Viral/patologia , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/patologia , Camundongos , Camundongos Endogâmicos BALB C , Artéria Pulmonar/patologia , Infecções por Vírus Respiratório Sincicial/patologia
5.
Part Fibre Toxicol ; 15(1): 20, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29724254

RESUMO

BACKGROUND: Pollutant particles containing environmentally persistent free radicals (EPFRs) are formed during many combustion processes (e.g. thermal remediation of hazardous wastes, diesel/gasoline combustion, wood smoke, cigarette smoke, etc.). Our previous studies demonstrated that acute exposure to EPFRs results in dendritic cell maturation and Th17-biased pulmonary immune responses. Further, in a mouse model of asthma, these responses were enhanced suggesting exposure to EPFRs as a risk factor for the development and/or exacerbation of asthma. The aryl hydrocarbon receptor (AHR) has been shown to play a role in the differentiation of Th17 cells. In the current study, we determined whether exposure to EPFRs results in Th17 polarization in an AHR dependent manner. RESULTS: Exposure to EPFRs resulted in Th17 and IL17A dependent pulmonary immune responses including airway neutrophilia. EPFR exposure caused a significant increase in pulmonary Th17 cytokines such as IL6, IL17A, IL22, IL1ß, KC, MCP-1, IL31 and IL33. To understand the role of AHR activation in EPFR-induced Th17 inflammation, A549 epithelial cells and mouse bone marrow-derived dendritic cells (BMDCs) were exposed to EPFRs and expression of Cyp1a1 and Cyp1b1, markers for AHR activation, was measured. A significant increase in Cyp1a1 and Cyp1b1 gene expression was observed in pulmonary epithelial cells and BMDCs in an oxidative stress and AHR dependent manner. Further, in vivo exposure of mice to EPFRs resulted in oxidative stress and increased Cyp1a1 and Cyp1b1 pulmonary gene expression. To further confirm the role of AHR activation in pulmonary Th17 immune responses, mice were exposed to EPFRs in the presence or absence of AHR antagonist. EPFR exposure resulted in a significant increase in pulmonary Th17 cells and neutrophilic inflammation, whereas a significant decrease in the percentage of Th17 cells and neutrophilic inflammation was observed in mice treated with AHR antagonist. CONCLUSION: Exposure to EPFRs results in AHR activation and induction of Cyp1a1 and in vitro this is dependent on oxidative stress. Further, our in vivo studies demonstrated a role for AHR in EPFR-induced pulmonary Th17 responses including neutrophilic inflammation.


Assuntos
Poluentes Atmosféricos/toxicidade , Radicais Livres/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo , Células Th17/efeitos dos fármacos , Células A549 , Animais , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1B1/genética , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Humanos , Inflamação , Interleucina-17/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo/imunologia , Receptores de Hidrocarboneto Arílico/genética , Células Th17/imunologia , Células Th17/metabolismo
6.
J Leukoc Biol ; 102(1): 153-161, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28389622

RESUMO

Respiratory syncytial virus (RSV) is one of the leading causes of bronchiolitis in children, and severe RSV infection early in life has been associated with asthma development. Using a neonatal mouse model, we have shown that down-regulation of IL-4 receptor α (IL-4Rα) with antisense oligonucleotides in the lung during neonatal infection protected from RSV immunopathophysiology. Significant down-regulation of IL-4Rα was observed on pulmonary CD11b+ myeloid dendritic cells (mDCs) suggesting a role for IL-4Rα on mDCs in the immunopathogenesis of neonatal RSV infection. Here, we demonstrated that neonatal CD11b+ mDCs expressed higher levels of IL-4Rα than their adult counterparts. Because CD11b+ mDCs mainly present antigens to CD4+ T cells, we hypothesized that increased expression of IL-4Rα on neonatal CD11b+ mDCs was responsible for Th2 - biased RSV immunopathophysiology. Indeed, when IL-4Rα was selectively deleted from CD11b+ mDCs, the immunopathophysiology typically observed following RSV reinfection was ablated, including Th2 inflammation, airway-mucus hyperproduction, and pulmonary dysfunction. Further, overexpression of IL-4Rα on adult CD11b+ DCs and their adoptive transfer into adult mice was able to recapitulate the Th2-biased RSV immunopathology typically observed only in neonates infected with RSV. IL-4Rα levels on CD11c+ cells were inversely correlated with maturation status of CD11b+ mDCs upon RSV infection. Our data demonstrate that developmentally regulated IL-4Rα expression is critical for the maturity of pulmonary CD11b+ mDCs and the Th2-biased immunopathogenesis of neonatal RSV infection.


Assuntos
Células Dendríticas/imunologia , Receptores de Superfície Celular/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sinciciais Respiratórios/imunologia , Células Th2/imunologia , Animais , Animais Recém-Nascidos , Antígeno CD11b/genética , Antígeno CD11b/imunologia , Células Dendríticas/patologia , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Receptores de Superfície Celular/genética , Infecções por Vírus Respiratório Sincicial/genética , Infecções por Vírus Respiratório Sincicial/patologia , Vírus Sinciciais Respiratórios/genética , Células Th2/patologia
7.
J Appl Toxicol ; 37(8): 913-921, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28138994

RESUMO

Hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX), environmental degradation product of munitions hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), causes seizures in rats with acute oral exposure like parent RDX. Our previous studies have additionally reported hematotoxicity with acute MNX exposure manifested as myelosuppression, anemia and splenic hemosiderosis. This study explored whether MNX administered subchronically continued to target bone marrow to elicit peripheral blood cytopenia. Female Sprague-Dawley rats were gavaged daily for 4 or 6 weeks with 47 mg kg-1 day-1 MNX (» LD50 ) or vehicle (5% dimethyl sulfoxide in corn oil) and hematological and clinical chemistry parameters, spleen weights, spleen and bone marrow histopathology and immunohistochemistry with ED1 anti-CD68 macrophage marker were evaluated 24 h after the last dose. Unexpectedly, no decrease in blood erythroid parameters was seen with subchronic MNX and convulsions and tremors ceased after 2 weeks of treatment. Toxicological effects observed were MNX-induced increases in blood granulocyte and platelet counts and in bone marrow megakaryocyte and ED1+ -macrophage density. MNX was without effect on bone marrow cellularity and picrosirius red stained/collagen fiber deposition. Spleen weight increased modestly with extramedullary hematopoiesis evident, but hemosiderin and relative red and white pulp areas were unaffected. Collectively, this study demonstrated that erythroid effects characteristic of acute MNX exposure were not evident with subchronic exposure. However, megakaryocyte proliferation in bone marrow coincident with thrombocytosis after subchronic MNX exposure suggested continued hematotoxicity, but with a qualitatively different outcome. Granulocytosis and increased bone marrow macrophages implicated an inflammatory component in MNX hematotoxicity. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Medula Óssea/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Substâncias Explosivas/toxicidade , Macrófagos/efeitos dos fármacos , Megacariócitos/efeitos dos fármacos , Triazinas/toxicidade , Animais , Biodegradação Ambiental , Contagem de Células Sanguíneas , Medula Óssea/imunologia , Medula Óssea/patologia , Relação Dose-Resposta a Droga , Feminino , Hematopoese Extramedular/efeitos dos fármacos , Macrófagos/imunologia , Megacariócitos/citologia , Tamanho do Órgão/efeitos dos fármacos , Ratos Sprague-Dawley , Baço/efeitos dos fármacos , Baço/patologia
8.
Respir Res ; 18(1): 15, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-28086957

RESUMO

BACKGROUND: Exposure to elevated levels of particulate matter (PM) is associated with increased risk of morbidity and mortality due to respiratory tract viral infections in infants. Recent identification of environmentally persistent free radicals (EPFRs) in the PM from a variety of combustion sources suggests its role in the enhancement of disease severity of lower respiratory tract infections (LRTI). Our previous studies demonstrated that acute exposure to EPFRs induces pulmonary immunosuppression allowing for enhanced influenza disease severity. Here, we determine the mechanism of EPFR-induced immunosuppression and its impact on the immune response towards influenza infection. METHODS: Neonatal mice (3 days old) were acutely exposed to DCB (combustion derived PM with chemisorbed EPFR) for seven consecutive days. Four days post-exposure (dpe), mice were infected with influenza virus. Pulmonary T cell phenotypes including regulatory T cells (Tregs) were analyzed by flow cytometry. The role of IL10 in EPFR-induced exacerbation of influenza disease severity was determined by administering recombinant IL10 (rIL10) to wild type mice or by using IL10 deficient (IL10-/-) neonatal mice. Mice were assessed for morbidity by measuring percent weight change and pulmonary viral load. RESULTS: Neonatal mice exposed to EPFRs had a significant increase in pulmonary Tregs and the immunosuppressive cytokine IL10 following influenza infection, which coincided with decreased protective T cell responses to influenza infection at 6 dpi. Depletion of Tregs in EPFR-exposed neonatal mice resulted in increased protective, adaptive T cell responses, whereas adoptive transfer of Tregs from EPFR-exposed neonates to air-exposed neonatal mice suppressed adaptive T cell responses towards influenza infection. Further, treatment with rIL10 could recapitulate EPFR-induced exacerbation of morbidity and pulmonary viral load compared to air exposed and influenza infected mice, whereas, EPFR-exposed IL10-/- neonates exhibited significant reductions in morbidity, pulmonary viral load and adaptive T cell responses following influenza infection. CONCLUSIONS: Neonatal exposure to EPFRs induced Tregs and IL10 resulting in suppressed adaptive T cell responses and enhanced influenza disease severity in neonatal mice. Depletion of Tregs increased adaptive T cell responses and deficiency of IL10 reduced morbidity and conferred enhanced protection against influenza virus.


Assuntos
Exposição Ambiental/efeitos adversos , Hospedeiro Imunocomprometido/imunologia , Influenza Humana/imunologia , Pulmão/imunologia , Material Particulado/efeitos adversos , Linfócitos T Reguladores/imunologia , Animais , Animais Recém-Nascidos , Citocinas/imunologia , Feminino , Radicais Livres/efeitos adversos , Humanos , Hospedeiro Imunocomprometido/efeitos dos fármacos , Influenza Humana/patologia , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/efeitos dos fármacos
9.
PLoS One ; 12(1): e0169273, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28060871

RESUMO

Pneumonia due to methicillin-resistant Staphylococcus aureus (MRSA) is a significant cause of morbidity and mortality in infants particularly following lower respiratory tract viral infections such as Respiratory Syncytial Virus (RSV). However, the mechanisms by which co-infection of infants by MRSA and RSV cause increased lung pathology are unknown. Because the infant immune system is qualitatively and quantitatively different from adults we developed a model of infant MRSA pneumonia which will allow us to investigate the effects of RSV co-infection on disease severity. We infected neonatal and adult mice with increasing doses of MRSA and demonstrate that neonatal mice have delayed kinetics in clearing the bacteria in comparison to adult mice. There were differences in recruitment of immune cells into the lung following infection. Adult mice exhibited an increase in neutrophil recruitment that coincided with reduced bacterial titers followed by an increase in macrophages. Neonatal mice, however, exhibited an early increase in neutrophils that did not persist despite continued presence of the bacteria. Unlike the adult mice, neonatal mice failed to exhibit an increase in macrophages. Neonates exhibited a decrease in phagocytosis of MRSA suggesting that the decrease in clearance was partially due to deficient phagocytosis of the bacteria. Both neonates and adults responded with an increase in pro-inflammatory cytokines following infection. However, in contrast to the adult mice, neonates did not express constitutive levels of the anti-microbial peptide Reg3γ in the lung. Infection of neonates did not stimulate expression of the co-stimulatory molecule CD86 by dendritic cells and neonates exhibited a diminished T cell response compared to adult mice. Overall, we have developed a neonatal model of MRSA pneumonia that displays a similar delay in bacterial clearance as is observed in the neonatal intensive care unit and will be useful for performing co-infection studies.


Assuntos
Staphylococcus aureus Resistente à Meticilina/patogenicidade , Pneumonia Estafilocócica/metabolismo , Pneumonia Estafilocócica/microbiologia , Animais , Animais Recém-Nascidos , Antígeno B7-2/genética , Antígeno B7-2/metabolismo , Feminino , Pulmão/metabolismo , Pulmão/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas a Pancreatite , Fagocitose/fisiologia , Proteínas/genética , Proteínas/metabolismo , Vírus Sinciciais Respiratórios/patogenicidade
10.
Am J Physiol Endocrinol Metab ; 310(11): E1003-15, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27117006

RESUMO

We have investigated the effects of in utero exposure to environmentally persistent free radicals (EPFRs) on growth, metabolism, energy utilization, and skeletal muscle mitochondria in a mouse model of diet-induced obesity. Pregnant mice were treated with laboratory-generated, combustion-derived particular matter (MCP230). The adult offspring were placed on a high-fat diet for 12 wk, after which we observed a 9.8% increase in their body weight. The increase in body size observed in the MCP230-exposed mice was not associated with increases in food intake but was associated with a reduction in physical activity and lower energy expenditure. The reduced energy expenditure in mice indirectly exposed to MCP230 was associated with reductions in skeletal muscle mitochondrial DNA copy number, lower mRNA levels of electron transport genes, and reduced citrate synthase activity. Upregulation of key genes involved in ameliorating oxidative stress was also observed in the muscle of MCP230-exposed mice. These findings suggest that gestational exposure to MCP230 leads to a reduction in energy expenditure at least in part through alterations to mitochondrial metabolism in the skeletal muscle.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Radicais Livres/toxicidade , Mitocôndrias Musculares/metabolismo , Material Particulado/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Relação Dose-Resposta a Droga , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/toxicidade , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/patologia , Doenças Mitocondriais/induzido quimicamente , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Gravidez/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/patologia
11.
PLoS Pathog ; 11(10): e1005217, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26473724

RESUMO

Respiratory syncytial virus (RSV) is the most common cause of infant hospitalizations and severe RSV infections are a significant risk factor for childhood asthma. The pathogenic mechanisms responsible for RSV induced immunopathophysiology remain elusive. Using an age-appropriate mouse model of RSV, we show that IL-33 plays a critical role in the immunopathogenesis of severe RSV, which is associated with higher group 2 innate lymphoid cells (ILC2s) specifically in neonates. Infection with RSV induced rapid IL-33 expression and an increase in ILC2 numbers in the lungs of neonatal mice; this was not observed in adult mice. Blocking IL-33 with antibodies or using an IL-33 receptor knockout mouse during infection was sufficient to inhibit RSV immunopathogenesis (i.e., airway hyperresponsiveness, Th2 inflammation, eosinophilia, and mucus hyperproduction); whereas administration of IL-33 to adult mice during RSV infection was sufficient to induce RSV disease. Additionally, elevated IL-33 and IL-13 were observed in nasal aspirates from infants hospitalized with RSV; these cytokines declined during convalescence. In summary, IL-33 is necessary, either directly or indirectly, to induce ILC2s and the Th2 biased immunopathophysiology observed following neonatal RSV infection. This study provides a mechanism involving IL-33 and ILC2s in RSV mediated human asthma.


Assuntos
Interleucina-33/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Envelhecimento , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Humanos , Lactente , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Testes de Função Respiratória , Vírus Sinciciais Respiratórios/imunologia , Células Th2/imunologia
12.
Environ Sci Technol ; 49(14): 8769-76, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26115348

RESUMO

The ″in situ burning" of trapped crude oil on the surface of Gulf waters during the 2010 Deepwater Horizon (DWH) oil spill released numerous pollutants, including combustion-generated particulate matter (PM). Limited information is available on the respiratory impact of inhaled in situ burned oil sail particulate matter (OSPM). Here we utilized PM collected from in situ burn plumes of the DWH oil spill to study the acute effects of exposure to OSPM on pulmonary health. OSPM caused dose-and time-dependent cytotoxicity and generated reactive oxygen species and superoxide radicals in vitro. Additionally, mice exposed to OSPM exhibited significant decreases in body weight gain, systemic oxidative stress in the form of increased serum 8-isoprostane (8-IP) levels, and airway inflammation in the form of increased macrophages and eosinophils in bronchoalveolar lavage fluid. Further, in a mouse model of allergic asthma, OSPM caused increased T helper 2 cells (Th2), peribronchiolar inflammation, and increased airway mucus production. These findings demonstrate that acute exposure to OSPM results in pulmonary inflammation and alteration of innate/adaptive immune responses in mice and highlight potential respiratory effects associated with cleaning up an oil spill.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Exposição Ambiental/análise , Material Particulado/toxicidade , Poluição por Petróleo , Petróleo/toxicidade , Pneumonia/imunologia , Pneumonia/patologia , Animais , Asma/sangue , Asma/complicações , Asma/imunologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dinoprosta/análogos & derivados , Dinoprosta/sangue , Modelos Animais de Doenças , Espectroscopia de Ressonância de Spin Eletrônica , Feminino , Camundongos Endogâmicos BALB C , Muco/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pneumonia/sangue , Pneumonia/complicações , Superóxidos/metabolismo , Fatores de Tempo
13.
Part Fibre Toxicol ; 11: 57, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25358535

RESUMO

BACKGROUND: Exposures to elevated levels of particulate matter (PM) enhance severity of influenza virus infection in infants. The biological mechanism responsible for this phenomenon is unknown. The recent identification of environmentally persistent free radicals (EPFRs) associated with PM from a variety of combustion sources suggests its role in the enhancement of influenza disease severity. METHODS: Neonatal mice (< seven days of age) were exposed to DCB230 (combustion derived PM with a chemisorbed EPFR), DCB50 (non-EPFR PM sample), or air for 30 minutes/day for seven consecutive days. Four days post-exposure, neonates were infected with influenza intranasally at 1.25 TCID50/neonate. Neonates were assessed for morbidity (% weight gain, peak pulmonary viral load, and viral clearance) and percent survival. Lungs were isolated and assessed for oxidative stress (8-isoprostanes and glutathione levels), adaptive immune response to influenza, and regulatory T cells (Tregs). The role of the EPFR was also assessed by use of transgenic mice expressing human superoxide dismutase 2. RESULTS: Neonates exposed to EPFRs had significantly enhanced morbidity and decreased survival following influenza infection. Increased oxidative stress was also observed in EPFR exposed neonates. This correlated with increased pulmonary Tregs and dampened protective T cell responses to influenza infection. Reduction of EPFR-induced oxidative stress attenuated these effects. CONCLUSIONS: Neonatal exposure to EPFR containing PM resulted in pulmonary oxidative stress and enhanced influenza disease severity. EPFR-induced oxidative stress resulted in increased presence of Tregs in the lungs and subsequent suppression of adaptive immune response to influenza.


Assuntos
Radicais Livres/toxicidade , Vírus da Influenza A Subtipo H1N1/patogenicidade , Pulmão/efeitos dos fármacos , Pulmão/virologia , Infecções por Orthomyxoviridae/induzido quimicamente , Infecções por Orthomyxoviridae/virologia , Material Particulado/toxicidade , Imunidade Adaptativa/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Dinoprosta/análogos & derivados , Dinoprosta/metabolismo , Glutationa/metabolismo , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Exposição por Inalação/efeitos adversos , Pulmão/imunologia , Pulmão/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Medição de Risco , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/virologia , Fatores de Tempo , Carga Viral
14.
Toxicol Appl Pharmacol ; 266(3): 443-51, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23219714

RESUMO

Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a widely used munitions compound, and hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX), its N-nitroso product of anaerobic microbial nitroreduction, are contaminants of military sites. Previous studies have shown MNX to be the most acutely toxic among the nitroreduced degradation products of RDX and to cause mild anemia at high dose. The present study compares hematotoxicity with acute oral exposure to MNX with parent RDX. Both RDX and MNX caused a modest decrease in blood hemoglobin and ~50% loss of granulocytes (NOAELs=47 mg/kg) in female Sprague-Dawley rats observed 14 days post-exposure. We explored the possibility that blood cell loss observed after 14 days was delayed in onset because of toxicity to bone marrow (BM) progenitors. RDX and MNX decreased granulocyte/macrophage-colony forming cells (GM-CFCs) at 14, but not 7, days (NOAELs=24 mg/kg). The earliest observed time at which MNX decreased GM-CFCs was 10 days post-exposure. RDX and MNX likewise decreased BM burst-forming units-erythroid (BFU-Es) at 14, but not 7, days. Granulocyte-erythrocyte-monocyte-megakaryocyte (GEMM)-CFCs were unaffected by RDX and MNX at 7 days suggesting precursor depletion did not account for GM-CFC and BFU-E loss. MNX added to the culture media was without effect on GM-CFC formation indicating no direct inhibition. Flow cytometry showed no differential loss of BM multilineage progenitors (Thy1.1(+)) or erythroid (CD71(+)) precursors with MNX suggesting myeloid and erythroid lineages were comparably affected. Collectively, these data indicate that acute exposure to both RDX and MNX caused delayed suppression of myelo- and erythropoiesis with subsequent decrease of peripheral granulocytes and erythrocytes.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Substâncias Explosivas/toxicidade , Mielopoese/efeitos dos fármacos , Triazinas/toxicidade , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Células Precursoras Eritroides/efeitos dos fármacos , Células Precursoras Eritroides/metabolismo , Feminino , Citometria de Fluxo , Células Progenitoras de Granulócitos e Macrófagos/efeitos dos fármacos , Células Progenitoras de Granulócitos e Macrófagos/metabolismo , Hematócrito , Hemoglobinas/metabolismo , Células Progenitoras Mieloides/efeitos dos fármacos , Células Progenitoras Mieloides/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...