Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 9: 1011836, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407517

RESUMO

Background: For decades, lycopene was considered the main compound of tomato protecting benign prostatic hyperplasia (BPH). Recent animal studies suggest that a newly discovered compound "FruHis" boosts lycopene for its action. This study aimed to determine whether FruHis enhances the action of lycopene to modify the laboratory parameters and clinical outcomes of patients with BPH. Materials and methods: Current study was conducted on 52 BPH patients, who were randomly assigned into four groups of treatments: lycopene plus FruHis (n = 11, 25 mg/day lycopene and 10 mg/day FruHis), lycopene (n = 12, 25 mg/day lycopene), FruHis (n = 12, 10 mg/day FruHis), and placebo (n = 13). Patients received these supplements for 8 weeks. Results: FruHis intake strengthened the reducing effects of lycopene on insulin-like growth factor-1 (IGF-1) (-54.47 ± 28.36 ng/mL in the lycopene + FruHis group vs. -30.24 ± 46.69 ng/mL in the lycopene group), total prostate-specific antigen (TPSA) (-1.49 ± 4.78 ng/mL in the lycopene + FruHis group vs. -0.64 ± 2.02 ng/mL in the lycopene group), and symptom score (-4.45 ± 4.03 in the lycopene + FruHis group vs. -1.66 ± 5.41 in the lycopene group) in BPH patients. Such findings were also seen for body mass index (BMI) and waist circumference (WC). However, except for IGF-1, these reductions were not statistically significant compared with the placebo, and the intakes of lycopene and FruHis alone, however, were clinically important. Such effects of lycopene and FruHis were not seen for free PSA (FPSA) and FPSA/TPSA ratio. Conclusion: Despite the non-significant effects of lycopene and FruHis, it seems that FruHis intake strengthens the beneficial effects of lycopene on IGF-1, TPSA, and symptom scores among BPH patients. Clinical trial registration: [www.irct.ir], identifier [IRCT20190522043669N1].

2.
Front Chem ; 10: 895483, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844650

RESUMO

In this research, a series of coumarin-based scaffolds linked to pyridine derivatives via a flexible aliphatic linkage were synthesized and assessed as multifunctional anti-AD agents. All the compounds showed acceptable acetylcholinesterase (AChE) inhibition activity in the nanomolar range (IC50 = 2-144 nM) and remarkable butyrylcholinesterase (BuChE) inhibition property (IC50 = 9-123 nM) compared to donepezil as the standard drug (IC50 = 14 and 275 nM, respectively). Compound 3f as the best AChE inhibitor (IC50 = 2 nM) showed acceptable BuChE inhibition activity (IC50 = 24 nM), 100 times more active than the standard drug. Compound 3f could also significantly protect PC12 and SH-SY5Y cells against H2O2-induced cell death and amyloid toxicity, respectively, superior to the standard drugs. It could interestingly reduce ß-amyloid self and AChE-induced aggregation, more potent than the standard drug. All the results suggest that compound 3f could be considered as a promising multi-target-directed ligand (MTDL) against AD.

3.
Bioorg Chem ; 110: 104750, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33691251

RESUMO

A new serise of 7-hydroxy-chromone derivatives bearing pyridine moiety were synthesized, and evaluated as multifunctional agents against Alzheimer's disease (AD). Most of the compounds were good AChE inhibitors (IC50 = 9.8-0.71 µM) and showed remarkable BuChE inhibition activity (IC50 = 1.9-0.006 µM) compared with donepezil as the standard drug (IC50 = 0.023 and 3.4 µM). Compounds 14 and 10 showed the best inhibitory activity toward AChE (IC50 = 0.71 µM) and BuChE (IC50 = 0.006 µM), respectively. The ligand-protein docking simulations and kinetic studies revealed that compound 14 and 10 could bind effectively to the peripheral anionic binding site (PAS) of the AChE and BuChE through mixed-type inhibition. In addition, the most potent compounds showed acceptable neuroprotective activity on H2O2- and Aß-induced .neurotoxicity in PC12 cells, more than standard drugs. The compounds could block effectively self- and AChE-induced Aß aggregation. All the results suggest that compounds 14 and 10 could be considered as promising multi-target-directed ligands against AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Cromonas/farmacologia , Desenho de Fármacos , Compostos de Piridínio/farmacologia , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Animais , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/farmacologia , Cromonas/síntese química , Relação Dose-Resposta a Droga , Peróxido de Hidrogênio , Ligantes , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Células PC12 , Farmacocinética , Conformação Proteica , Compostos de Piridínio/química , Ratos
4.
Daru ; 29(1): 23-38, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33420969

RESUMO

PURPOSE: Alzheimer's disease (AD) is a multifaceted neurodegenerative disease. To target simultaneously multiple pathological processes involved in AD, natural-origin compounds with unique characteristics are promising scaffolds to develop novel multi-target compounds in the treatment of different neurodegenerative disease, especially AD. In this study, novel chromone-lipoic acid hybrids were prepared to find a new multifunctional lead structure for the treatment of AD. METHODS: Chromone-lipoic acid hybrids were prepared through click reaction and their neuroprotection and anticholinesterase activity were fully evaluated. The anti-amyloid aggregation, antioxidant and metal-chelation activities of the best compound were also investigated by standard methods to find a new multi-functional agent against AD. RESULTS: The primary biological screening demonstrated that all compounds had significant neuroprotection activity against H2O2-induced cell damage in PC12 cells. Compound 19 as the most potent butyrylcholinesterase (BuChE) inhibitor (IC50 = 7.55 µM) having significant neuroprotection activity as level as reference drug was selected for further biological evaluations. Docking and kinetic studies revealed non-competitive mixed-type inhibition of BuChE by compound 19. It could significantly reduce formation of the intracellular reactive oxygen species (ROS) and showed excellent reducing power (85.57 mM Fe+2), comparable with quercetin and lipoic acid. It could also moderately inhibit Aß aggregation and selectively chelate with copper ions in 2:1 M ratio. CONCLUSION: Compound 19 could be considered as a hopeful multifunctional agent for the further development gainst AD owing to the acceptable neuroprotective and anti-BuChE activity, moderate anti-Aß aggregation activity, outstanding antioxidant activity as well as selective copper chelation ability. A new chromone-lipoic acid hybrid was synthesized as anti-Alzheimer agent with BuChE inhibitory activity, anti-Aß aggregation, metal-chelation and antioxidant properties.


Assuntos
Antioxidantes/farmacologia , Quelantes/farmacologia , Inibidores da Colinesterase/farmacologia , Cromonas/farmacologia , Fármacos Neuroprotetores/farmacologia , Ácido Tióctico/farmacologia , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Peptídeos beta-Amiloides/química , Animais , Antioxidantes/química , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Quelantes/química , Inibidores da Colinesterase/química , Cromonas/química , Cobre/química , Fármacos Neuroprotetores/química , Células PC12 , Fragmentos de Peptídeos/química , Ratos , Espécies Reativas de Oxigênio/metabolismo , Ácido Tióctico/química
5.
Eur J Med Chem ; 212: 113034, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33276991

RESUMO

The combination of heterocycles offers a new opportunity to create novel multicyclic compounds having improved biological activity. Coumarins are ubiquitous natural heterocycle widely adopted in the design of various biologically active compounds. Fusing different heterocycles with coumarin ring is one of the interesting approaches to generating novel hybrid molecules having highlighted biological activities. In the efforts to develop heterocyclic-fused coumarins, a wide range of 3,4-heterocycle-fused coumarins have been introduced bearing outstanding biological activity. The effect of heterocycles annulation at 3,4-positions of coumarin ring on the biological activity of the target structures were discussed. This review focuses on the important progress of 3,4-heterocycle-fused coumarins providing better insight for medicinal chemists on the design and preparation of biologically active heterocycle-fused coumarins with a significant therapeutic effect in the future.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Antivirais/farmacologia , Cumarínicos/farmacologia , Compostos Heterocíclicos/farmacologia , Animais , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Antioxidantes/síntese química , Antioxidantes/química , Antivirais/síntese química , Antivirais/química , Cumarínicos/síntese química , Cumarínicos/química , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Humanos , Estrutura Molecular
6.
Bioorg Chem ; 91: 103164, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31398601

RESUMO

Multi-Target approach is particularly promising way to drug discovery against Alzheimer's disease. In the present study, we synthesized a series of compounds comprising the carbazole backbone linked to the benzyl piperazine, benzyl piperidine, pyridine, quinoline, or isoquinoline moiety through an aliphatic linker and evaluated as cholinesterase inhibitors. The synthesized compounds showed IC50 values of 0.11-36.5 µM and 0.02-98.6 µM against acetyl- and butyrylcholinesterase (AChE and BuChE), respectively. The ligand-protein docking simulations and kinetic studies revealed that compound 3s could bind effectively to the peripheral anionic binding site (PAS) and anionic site of the enzyme with mixed-type inhibition. Compound 3s was the most potent compound against AChE and BuChE and showed acceptable inhibition potency for self- and AChE-induced Aß1-42 aggregation. Moreover, compound 3s could significantly protect PC12 cells against H2O2-induced toxicity. The results suggested that the compounds 3s could be considered as a promising multi-functional agent for further drug discovery development against Alzheimer's disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/química , Antioxidantes/farmacologia , Carbazóis/química , Inibidores da Colinesterase/farmacologia , Fármacos Neuroprotetores/farmacologia , Acetilcolinesterase/química , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/efeitos dos fármacos , Animais , Antioxidantes/química , Inibidores da Colinesterase/química , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/química , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Ratos
7.
Chem Biodivers ; 16(5): e1800436, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30957958

RESUMO

Two series of novel coumarin derivatives, substituted at 3 and 7 positions with aminoalkoxy groups, are synthesized, characterized, and screened. The effect of amine substituents and the length of cross-linker are investigated in acetyl- and butyrylcholinesterase (AChE and BuChE) inhibition. Target compounds show moderate to potent inhibitory activities against AChE and BuChE. 3-(3,4-Dichlorophenyl)-7-[4-(diethylamino)butoxy]-2H-chromen-2-one (4y) is identified as the most potent compound against AChE (IC50 =0.27 µm). Kinetic and molecular modeling studies affirmed that compound 4y works in a mixed-type way and interacts simultaneously with the catalytic active site (CAS) and peripheral anionic site (PAS) of AChE. In addition, compound 4y blocks ß-amyloid (Aß) self-aggregation with a ratio of 44.11 % at 100 µm and significantly protects PC12 cells from H2 O2 -damage in a dose-dependent manner.


Assuntos
Cumarínicos/química , Ligantes , Fármacos Neuroprotetores/química , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Animais , Apoptose/efeitos dos fármacos , Sítios de Ligação , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Domínio Catalítico , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Cumarínicos/farmacologia , Cumarínicos/uso terapêutico , Humanos , Peróxido de Hidrogênio/toxicidade , Concentração Inibidora 50 , Cinética , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Células PC12 , Ratos , Relação Estrutura-Atividade
8.
Eur J Med Chem ; 152: 570-589, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29763806

RESUMO

Alzheimer's disease (AD), the most common form of dementia, is a multifactorial neurodegenerative disease. The target enzymes inhibition including cholinesterase, beta-secretase, monoamine oxidase and inhibition of amyloid-ß aggregation as well as oxidative stress and metal chelation play an important role in the pathogenesis of AD. Chroman-4-one scaffold with benzo-γ-pyrone network is a privileged structure in organic synthesis and drug design. A large number of research has been carried out on modified naturally occurring chromanone scaffolds and/or synthesized new analogues, to obtain effective drugs for AD management. The present review summarizes aspects related to the multi-target-directed ligands (MTDLs) strategy in enzyme targets modulation performed with natural and synthesized chroman-4-one-based structures to look at their potential in the management of multifactorial Alzheimer's disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Inibidores da Colinesterase/farmacologia , Flavonoides/farmacologia , Inibidores da Monoaminoxidase/farmacologia , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Inibidores da Colinesterase/química , Colinesterases/metabolismo , Flavonoides/química , Humanos , Ligantes , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/química
9.
Eur J Med Chem ; 152: 600-614, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29763808

RESUMO

A novel series of coumarin-lipoic acid conjugates were synthesized via cycloaddition click reaction to find out new multi-target-directed ligands (MTDLs) for treatment of Alzheimer's disease (AD). All of synthesized compounds were screened for neuroprotective and anti-cholinesterase activities. Based on primary screening, two compounds (5 and 11) were subjected to further biological evaluations. In particular, compound 11 which was the most potent AChE inhibitor showed good inhibitory effect on Aß-aggregation and intracellular ROS (reactive oxygen species) formation, as well as the ability of selective bio-metal chelation and neuroprotection against H2O2- and Aß1-42-induced cytotoxicity. In the light of these results, the applied hybridization approach introduced new promising lead compound with desired multifunctional properties, being useful in the treatment of Alzheimer's disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Cumarínicos/farmacologia , Desenho de Fármacos , Ácido Tióctico/farmacologia , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Colinesterases/metabolismo , Cumarínicos/síntese química , Cumarínicos/química , Relação Dose-Resposta a Droga , Humanos , Peróxido de Hidrogênio/antagonistas & inibidores , Peróxido de Hidrogênio/farmacologia , Ligantes , Simulação de Acoplamento Molecular , Estrutura Molecular , Células PC12 , Agregados Proteicos/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Ácido Tióctico/síntese química , Ácido Tióctico/química
10.
Bioorg Chem ; 79: 223-234, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29775948

RESUMO

New series of triazole-containing 3-phenylcoumarin-lipoic acid conjugates were designed as multi-functional agents for treatment of Alzheimer's disease. The target compounds 4a-o were synthesized via the azide-alkyne cycloaddition reaction and their biological activities were primarily evaluated in terms of neuroprotection against H2O2-induced cell death in PC12 cells and AChE/BuChE inhibition. The promising compounds 4j and 4i containing four carbons spacer were selected for further biological evaluations. Based on the obtained results, the benzocoumarin derivative 4j with IC50 value of 7.3 µM was the most potent AChE inhibitor and displayed good inhibition toward intracellular reactive oxygen species (ROS). This compound with antioxidant and metal chelating ability showed also protective effect on cell injury induced by Aß1-42 in SH-SY5Y cells. Although the 8-methoxycoumarin analog 4i was slightly less active than 4j against AChE, but displayed higher protection ability against H2O2-induced cell death in PC12 and could significantly block Aß-aggregation. The results suggested that the prototype compounds 4i and 4j might be promising multi-functional agents for the further development of the disease-modifying treatments of Alzheimer's disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Cumarínicos/farmacologia , Fármacos Neuroprotetores/farmacologia , Ácido Tióctico/farmacologia , Acetilcolinesterase/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Animais , Linhagem Celular Tumoral , Cumarínicos/síntese química , Cumarínicos/química , Cumarínicos/uso terapêutico , Relação Dose-Resposta a Droga , Humanos , Peróxido de Hidrogênio/farmacologia , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/uso terapêutico , Células PC12 , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/metabolismo , Agregados Proteicos/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Ácido Tióctico/síntese química , Ácido Tióctico/química , Ácido Tióctico/uso terapêutico
11.
Eur J Pharm Sci ; 114: 175-188, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29248558

RESUMO

Brain tumor is a lethal, fast growing cancer and a difficult case for treatment. Receptor-mediated endocytosis has been recognized as one of the most effective methods for drug delivery to brain tissue by overcoming obstacles associated with conventional therapeutics. In this work, a targeted theranostic drug delivery system (DDS) was prepared based on gold­iron oxide nanocomposites (Fe3O4@Au NCs). Lipoic acid-curcumin (LA-CUR) was synthesized and introduced as a novel anticancer drug, and glutathione (GSH) was exploited as the targeting ligand. Both LA-CUR and GSH were easily attached to Fe3O4@Au NCs via Au-S interaction. As a negatively charged nanocarrier, the prepared DDS showed relatively less protein adsorption. Accordingly, hemocompatibility assays (complement, platelet, and leucocyte activation) revealed its hemocompatible virtue, especially in respect of free LA-CUR. GSH functionalization led to 2-fold increase of cellular uptake in GSH receptor-positive astrocyte cells which could primarily indicate the probable ability of the DDS to bypass BBB. Cytotoxicity and apoptosis assays together showed the noticeably enhanced cytotoxicity of LA-CUR against cancerous U87MG cells (IC50=2.69µg/ml) in comparison with curcumin (IC50=21.31µg/ml); moreover, the DDS demonstrated relatively higher cytotoxicity against cancerous U87MG cells than normal astrocyte cells which was in accordance with pH sensitive mechanism of LA-CUR release. Besides, the results of in vitro magnetic resonance imaging (MRI) (relaxation rate (r2)=80.73 (s-1·mM-1)) primarily revealed that the DDS can be applied as a negative MRI contrast agent. In sum, the prepared DDS appeared to be a promising candidate for brain cancer treatment and a favorable MRI contrast agent.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Encefálicas , Curcumina/administração & dosagem , Nanopartículas Metálicas/administração & dosagem , Nanocompostos/administração & dosagem , Nanomedicina Teranóstica/métodos , Ácido Tióctico/administração & dosagem , Animais , Antineoplásicos/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Curcumina/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Compostos Férricos/administração & dosagem , Compostos Férricos/metabolismo , Ouro/administração & dosagem , Ouro/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Ácido Tióctico/metabolismo , Difração de Raios X
12.
Iran J Basic Med Sci ; 20(6): 631-638, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28868119

RESUMO

OBJECTIVES: To investigate the efficiency of a novel series of coumarin derivatives bearing benzoheterocycle moiety as novel cholinesterase inhibitors. MATERIALS AND METHODS: Different 7-hydroxycoumarin derivatives were synthesized via Pechmann or Knoevenagel condensation and conjugated to different benzoheterocycle (8-hydroxyquinoline, 2-mercaptobenzoxazole or 2-mercaptobenzimidazole) using dibromoalkanes 3a-m: Final compounds were evaluated against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) by Ellman's method. Kinetic study of AChE inhibition and ligand-protein docking simulation were also carried out for the most potent compound 3b. RESULTS: Some of the compounds revealed potent and selective activity against AChE. Compound 3b containing the quinoline group showed the best activity with an IC50 value of 8.80 µM against AChE. Kinetic study of AChE inhibition revealed the mixed-type inhibition of the enzyme by compound 3b. Ligand-protein docking simulation also showed that the flexibility of the hydrophobic five carbons linker allows the quinoline ring to form π-π interaction with Trp279 in the PAS. CONCLUSION: We suggest these synthesized compounds could become potential leads for AChE inhibition and prevention of AD symptoms.

13.
Eur J Med Chem ; 139: 280-289, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-28803044

RESUMO

A novel series of tacrine-like compounds 7a-u possessing a fused pyrazolo[1,2-b]phthalazine structure were designed and synthesized as potent and selective inhibitors of AChE. The in-vitro biological assessments demonstrated that several compounds had high anti-AChE activity at nano-molar level. The more promising compound 7l with IC50 of 49 nM was 7-fold more potent than tacrine and unlike tacrine, it was highly selective against AChE over BuChE. The cell-based assays against hepatocytes (HepG2) and neuronal cell line (PC12) revealed that 7l had significantly lower hepatotoxicity compared to tacrine, with additional neuroprotective activity against H2O2-induced damage in PC12 cells. This compound could also inhibit AChE-induced and self-induced Aß peptide aggregation. The advantages including synthetic accessibility, high potency and selectivity, low toxicity, adjunctive neuroprotective and Aß aggregation inhibitory activity, make this compound as a new multifunctional lead for Alzheimer's disease drug discovery.


Assuntos
Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Fármacos Neuroprotetores/farmacologia , Ftalazinas/farmacologia , Pirazóis/farmacologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Animais , Butirilcolinesterase/metabolismo , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Peróxido de Hidrogênio/farmacologia , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Células PC12 , Ftalazinas/síntese química , Ftalazinas/química , Agregados Proteicos/efeitos dos fármacos , Pirazóis/síntese química , Pirazóis/química , Ratos , Relação Estrutura-Atividade
14.
Chem Biol Drug Des ; 86(5): 1215-20, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26010139

RESUMO

A series of 4-hydroxycoumarin-derived compounds 8a-p containing N-benzyl-1,2,3-triazole motif were designed as AChE inhibitors. The title compounds were obtained conveniently using multicomponent click reaction. The in vitro anticholinesterase evaluation of synthesized compounds against AChE and BuChE showed that some of them are potent and selective inhibitors of AChE. Among them, 2-chlorobenzyl derivative 8k showed the most potent activity against AChE (IC50  = 0.18 µm). Its activity was also superior to that of standard drug tacrine. The kinetic study and molecular docking simulation of the most potent compound 8k were also described.


Assuntos
4-Hidroxicumarinas/química , 4-Hidroxicumarinas/farmacologia , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Triazóis/química , Triazóis/farmacologia , 4-Hidroxicumarinas/síntese química , Animais , Antagonistas Colinérgicos/síntese química , Antagonistas Colinérgicos/química , Antagonistas Colinérgicos/farmacologia , Inibidores da Colinesterase/síntese química , Química Click , Desenho de Fármacos , Electrophorus , Cinética , Simulação de Acoplamento Molecular , Triazóis/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...