Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 177: 116954, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38906027

RESUMO

Osteoporosis, characterized by compromised bone density and microarchitecture, represents a significant global health challenge, particularly in aging populations. This comprehensive review delves into the intricate signaling pathways implicated in the pathogenesis of osteoporosis, providing valuable insights into the pivotal role of signal transduction in maintaining bone homeostasis. The exploration encompasses cellular signaling pathways such as Wnt, Notch, JAK/STAT, NF-κB, and TGF-ß, all of which play crucial roles in bone remodeling. The dysregulation of these pathways is a contributing factor to osteoporosis, necessitating a profound understanding of their complexities to unveil the molecular mechanisms underlying bone loss. The review highlights the pathological significance of disrupted signaling in osteoporosis, emphasizing how these deviations impact the functionality of osteoblasts and osteoclasts, ultimately resulting in heightened bone resorption and compromised bone formation. A nuanced analysis of the intricate crosstalk between these pathways is provided to underscore their relevance in the pathophysiology of osteoporosis. Furthermore, the study addresses some of the most crucial long non-coding RNAs (lncRNAs) associated with osteoporosis, adding an additional layer of academic depth to the exploration of immune system involvement in various types of osteoporosis. Finally, we propose that SKP1 can serve as a potential biomarker in osteoporosis.

2.
Pathol Res Pract ; 251: 154849, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37837858

RESUMO

AMP-activated protein kinase (AMPK) signaling has a versatile role in Osteosarcoma (OS), an aggressive bone malignancy with a poor prognosis, particularly in cases that have metastasized or recurred. This review explores the regulatory mechanisms, functional roles, and therapeutic applications of AMPK signaling in OS. It focuses on the molecular activation of AMPK and its interactions with cellular processes like proliferation, apoptosis, and metabolism. The uncertain role of AMPK in cancer is also discussed, highlighting its potential as both a tumor suppressor and a contributor to carcinogenesis. The therapeutic potential of targeting AMPK signaling in OS treatment is examined, including direct and indirect activators like metformin, A-769662, resveratrol, and salicylate. Further research is needed to determine dosing, toxicities, and molecular mechanisms responsible for the anti-osteosarcoma effects of these compounds. This review underscores the complex involvement of AMPK signaling in OS and emphasizes the need for a comprehensive understanding of its molecular mechanisms. By elucidating the role of AMPK in OS, the aim is to pave the way for innovative therapeutic approaches that target this pathway, ultimately improving the prognosis and quality of life for OS patients.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Neoplasias Ósseas/metabolismo , Carcinogênese , Carcinógenos , Recidiva Local de Neoplasia , Osteossarcoma/metabolismo , Qualidade de Vida
3.
Cell J ; 25(2): 102-109, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36840456

RESUMO

OBJECTIVE: Parkinson's disease (PD) is a severely debilitating disease for which no suitable treatment has been found so far. In recent years, nanoparticles (NPs) have shown therapeutic potential in PD. Thus, in the current research, for the first time, we investigated the effects of vitamin E and TiO2 nanoparticles (TiO2-NPs) on a rat model of PD. MATERIALS AND METHODS: In this experimental study, after preparation and induction of PD, rats were administrated with vitamin E and TiO2-NPs. One day after receiving the last dose of treatments, rats were killed and substantia nigra was extracted from the brain and its cell suspension was prepared. In each group, female rats were mated, and after confirmation that the female rats were pregnant by vaginal smear test, the fetus was removed. Cell viability was studied by the MTT method and apoptosis, and necrosis were studied by the flow cytometry technique. Also, after RNA extraction and cDNA synthesis, the expression of Bcl-2 and circRNA 0001518 genes were studied using the real time polymerase chain reaction (RT-PCR) technique. For analyzing the data, two-way ANOVA was used. RESULTS: The results showed a sharp decrease in cell viability in female PD rats and fetuses resulting from PD female rats. Vitamin E treatment showed the greatest effect on increasing cell viability. Decreased expression of the Bcl-2 gene and increased expression of circRNA 0001518 were observed in PD conditions. CONCLUSION: Administration of vitamin E may be a good option for reducing PD-induced cell death.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...