Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 376(3): 436-443, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33376150

RESUMO

Transient receptor potential vanilloid 4 (TRPV4) channels expressed on pulmonary endothelial cells are activated by elevated pulmonary vascular pressure, resulting in endothelial shape change, pulmonary barrier disruption, and edema. As such, TRPV4 blocker GSK2798745 was recently investigated in phase I/IIa trials to reduce pulmonary edema caused by heart failure (HF). In the absence of a suitable TRPV4 target engagement biomarker, we hypothesized that an ex vivo assay could be used to predict pharmacological activity at the intended site of action (endothelial cells) of subjects. In this assay, the ability of GSK2798745 to block TRPV4 agonist GSK1016790-induced impendence reduction in human umbilical vein endothelial cells (HUVECs) in the presence of human whole blood was assessed. Blood from healthy volunteers drawn 1-12 hours after single or repeated dose of GSK2798745 (5 mg) inhibited GSK1016790-induced impedance reduction by ≥85%. Similarly, blood samples from 16 subjects with HF dosed with GSK2798745 (2.4 mg) inhibited GSK1016790-induced HUVEC impedance reduction by ≥58% 1-24 hours after single dosing and ≥78% 1-24 hours after 7 days of repeated dosing. No inhibition was detected using blood from placebo subjects. Using matched GSK2798745 plasma levels, a pharmacokinetic/pharmacodynamic (PK/PD) relationship was calculated as 2.9 nM IC50, consistent with the 6.5 nM IC50 of GSK2798745 obtained from a rat in vivo PK/PD model of pulmonary edema after correcting for rat-to-human differences. These results indicate that circulating levels of GSK2798745 in the recently completed phase I/IIa trials were sufficient to block TRPV4 in lung vascular endothelial cells to a large extent, supporting this dosing regimen for assessing efficacy in HF. SIGNIFICANCE STATEMENT: In the absence of a suitable target engagement biomarker, we developed an ex vivo assay to predict the pharmacological activity of the transient receptor potential vanilloid 4 (TRPV4) blocker GSK2798745 in healthy volunteers and subjects with heart failure (HF) from phase I/IIa trials. The potency values from the ex vivo assay were consistent with those predicted from a rat in vivo pharmacokinetic/pharmacodynamic model of pulmonary edema, strongly suggesting that circulating levels of GSK2798745 were sufficient to robustly block TRPV4, supporting use of GSK2798745 for assessing efficacy in HF.


Assuntos
Benzimidazóis/sangue , Benzimidazóis/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Compostos de Espiro/sangue , Compostos de Espiro/farmacologia , Canais de Cátion TRPV/metabolismo , Animais , Benzimidazóis/farmacocinética , Impedância Elétrica , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Masculino , Terapia de Alvo Molecular , Ratos , Compostos de Espiro/farmacocinética , Canais de Cátion TRPV/antagonistas & inibidores
2.
Clin Sci (Lond) ; 116(3): 241-8, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18643775

RESUMO

Mammalian orthologues of the Drosophila tribbles protein (Trb1, Trb2 and Trb3) are a recently described family of signalling molecules that regulate gene expression by modulation of protein kinase signalling pathways. In the present study, a screen for mRNA species specifically regulated in vulnerable regions of human atherosclerotic plaque demonstrated the up-regulation of both Trb1 and Trb2, the latter by more than 8-fold. In vitro experiments in primary human monocyte-derived macrophages showed that Trb2 expression was up-regulated by treatment with oxidized LDL (low-density lipoprotein), and that expression of recombinant Trb2 specifically reduced macrophage levels of IL-10 (interleukin-10) mRNA. Our results thus identify Trb2 as a highly regulated gene in vulnerable atherosclerotic lesions, and demonstrate inhibition of macrophage IL-10 biosynthesis as a potential pro-inflammatory consequence of high Trb2 expression, which may contribute to plaque instability.


Assuntos
Doenças das Artérias Carótidas/metabolismo , Interleucina-10/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macrófagos/metabolismo , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina , Doenças das Artérias Carótidas/cirurgia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Endarterectomia das Carótidas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-10/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Lipoproteínas LDL/farmacologia , Macrófagos/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
3.
Arterioscler Thromb Vasc Biol ; 26(8): 1837-44, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16741146

RESUMO

OBJECTIVE: Comparison of gene expression in stable versus unstable atherosclerotic plaque may be confounded by interpatient variability. The aim of this study was to identify differences in gene expression between stable and unstable segments of plaque obtained from the same patient. METHODS AND RESULTS: Human carotid endarterectomy specimens were segmented and macroscopically classified using a morphological classification system. Two analytical methods, an intraplaque and an interplaque analysis, revealed 170 and 1916 differentially expressed genes, respectively using Affymetrix gene chip analysis. A total of 115 genes were identified from both analyses. The differential expression of 27 genes was also confirmed using quantitative-polymerase chain reaction on a larger panel of samples. Eighteen of these genes have not been associated previously with plaque instability, including the metalloproteinase, ADAMDEC1 (approximately 37-fold), retinoic acid receptor responder-1 (approximately 5-fold), and cysteine protease legumain (approximately 3-fold). Matrix metalloproteinase-9 (MMP-9), cathepsin B, and a novel gene, legumain, a potential activator of MMPs and cathepsins, were also confirmed at the protein level. CONCLUSIONS: The differential expression of 18 genes not previously associated with plaque rupture has been confirmed in stable and unstable regions of the same atherosclerotic plaque. These genes may represent novel targets for the treatment of unstable plaque or useful diagnostic markers of plaque instability.


Assuntos
Aterosclerose/genética , Aterosclerose/patologia , Expressão Gênica , Biomarcadores/metabolismo , Catepsina B/metabolismo , Cisteína Endopeptidases/genética , Endotélio Vascular/metabolismo , Perfilação da Expressão Gênica , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Metaloproteinase 9 da Matriz/metabolismo , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/metabolismo , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...